
Prepared for
Tyler Tarsi
Omni Network Foundation

Prepared by
Frank Bachman
AyazMammadov
Zellic

July 15, 2024

Omni Network
Application Security Assessment



Omni Network Application Security Assessment July 15, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Omni Network 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Chain halt due to unbounded votes by proposer 11

3.2. Possible race condition in valsync init 13

4. Discussion 14

4.1. The block.prevdao is completely biasable by the proposer 15

4.2. Portal calls cannot be refunded if they fail 15

4.3. Validators cannot unstake 16

Zellic © 2024 ← Back to Contents Page 2 of 21



Omni Network Application Security Assessment July 15, 2024

5. ThreatModel 16

5.1. Module: keeper.go 17

5.2. Module: msg_server.go 18

5.3. Module: proposal_server.go 18

5.4. Module: keeper.go 19

5.5. Module: abci.go 19

5.6. Module: msg_server.go 20

5.7. Module: ProcessProposal 20

6. Assessment Results 20

6.1. Disclaimer 21

Zellic © 2024 ← Back to Contents Page 3 of 21



Omni Network Application Security Assessment July 15, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 21

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


Omni Network Application Security Assessment July 15, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Omni Network Foundation from June 24th to July 12th,
2024. During this engagement, Zellic reviewed Omni Network's code for security vulnerabilities,
design issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are thereanysetofoperations that canblocksubmissions frombeingmade (takingdown
thebridge)— forexample, bynot allowingacertainmessage tobesubmitted, andassuch
all subsequent messages cannot be submitted?

• Are there any ways to bypass the attestation on the bridge, submitting unapproved and
unattestedmessages?

• What powers does amalicious proposer have; can they attest entire blocks on their own
or take down the chain?

• What are the possible issues related to a chain reorganization?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody
• The use of the new experimental Cosmos optimistic execution feature

1.4. Results

During our assessment on the scoped Omni Network modules, we discovered two findings. No
critical issues were found. One finding was of high impact and the other finding was informational
in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Omni Network
Foundation's benefit in the Discussion section (4. ↗).

Zellic © 2024 ← Back to Contents Page 5 of 21



Omni Network Application Security Assessment July 15, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 1

■ Medium 0

■ Low 0

■ Informational 1

Zellic © 2024 ← Back to Contents Page 6 of 21



Omni Network Application Security Assessment July 15, 2024

2. Introduction 2.1. About Omni Network

Omni Network Foundation contributed the following description of Omni Network:

Omni combines an EVM execution layer with native cross chainmessaging. Both are secured
by Omni’s consensus layer dPoS validator set.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with themodules.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.

Zellic © 2024 ← Back to Contents Page 7 of 21



Omni Network Application Security Assessment July 15, 2024

We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped modules itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 21



Omni Network Application Security Assessment July 15, 2024

2.3. Scope

The engagement involved a review of the following targets:

Omni NetworkModules

Type Golang

Platform Cosmos

Target omni

Repository https://github.com/omni-network/omni ↗

Version 99b8ed78f7d4f1c80544f121071754b4e20f2db0

Programs halo/*
octane/*
contracts/src/xchain/*
contracts/src/octane/*
contracts/src/libraries/*
lib/xchain/*
lib/cchain/*

2.4. Project Overview

Zellicwas contracted to performa security assessment for a total of 3.6 person-weeks. The assess-
ment was conducted by two consultants over the course of 2.5 calendar weeks.

Contact Information

Zellic © 2024 ← Back to Contents Page 9 of 21

https://github.com/omni-network/omni


Omni Network Application Security Assessment July 15, 2024

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Frank Bachman
Engineer
frank@zellic.io ↗

AyazMammadov
Engineer
ayaz@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

June 24, 2024 Start of primary review period

June 27, 2024 Kick-off call

July 12, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 21

mailto:chad@zellic.io
mailto:frank@zellic.io
mailto:ayaz@zellic.io


Omni Network Application Security Assessment July 15, 2024

3. Detailed Findings 3.1. Chain halt due to unbounded votes by proposer

Target halo/attest/keeper.go

Category Business Logic Severity High

Likelihood Medium Impact High

Description

Due to a lack of validation, the number of votes that can be included in MsgAddVote is limitless. As
such, this poses problems as attestations thatwere registered are deleted after a certain blockwin-
dow. As there is no penalty to double voting and the maximum block size is 100 MB, these un-
bounded computations in halo's EndBlocker could result in several issues.

func (k *Keeper) deleteBefore(ctx context.Context, height uint64) error {
...
for iter.Next() {

...

// Delete signatures
if err := k.sigTable.DeleteBy(ctx,

SignatureAttIdIndexKey{}.WithAttId(att.GetId())); err != nil {
return errors.Wrap(err, "delete sigs")

}

// Delete attestation
err = k.attTable.Delete(ctx, att)
if err != nil {

return errors.Wrap(err, "delete att")
}

}

Impact

A malicious proposer could propose a block with up to ~100 MB of votes. This large computation
could result ina liveness issuewith theprocessingofvotes,whichwould result inaconsensus failure
and an eventual chain halt.

Zellic © 2024 ← Back to Contents Page 11 of 21



Omni Network Application Security Assessment July 15, 2024

Recommendations

Harden thevoteverification toensure thatonlyvotes thatwere in thevoting roundscanbeproposed.
This includesensuring that double votingcannot happenand that the vote limit cannot bebypassed.

Remediation

This was remediated in commit c4050e17 ↗ by hardening the vote verification. This included pre-
venting double signing, applying the vote extension limit on the votes and also fixed an issue that
would allow proposers to submit votes for unsupportedConfLevels allowing proposers to insert in-
valid votes on chain without risking slashing.

Zellic © 2024 ← Back to Contents Page 12 of 21

https://github.com/omni-network/omni/commit/c4050e17668423f2447b3c223eac1d9a7b5d8728


Omni Network Application Security Assessment July 15, 2024

3.2. Possible race condition in valsync init

Target halo/valsync/keeper.go

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

If a subscriber is initialized as a valid validator, and if a previous roundwhere the validator was not a
validator is attested to, that validator will mistakenly think it's not a validator.

func (k *Keeper) EndBlock(ctx context.Context) ([]abci.ValidatorUpdate, error)
{
...
// The subscriber is only added after `InitGenesis`, so ensure we notify it
of the latest valset.
if err := k.maybeInitSubscriber(ctx); err != nil {

return nil, err
}

// Check if any unattested set has been attested to (and return its
updates).
return k.processAttested(ctx)
...

}

Impact

If such a situation occurs, a participant in the network which is a validator might mistakenly think it
is not a validator and not vote. In the future, this might result in penalties or slashing.

Zellic © 2024 ← Back to Contents Page 13 of 21



Omni Network Application Security Assessment July 15, 2024

Recommendations

Refactor the code to avoid such potential issues.

Remediation

This was remediated in commit 43f0a05c ↗ by changing the validator subscriber update system to
send full validator sets instead of validator set updates (deltas), and ensuring that the validator set
update is newer than the old one.

Zellic © 2024 ← Back to Contents Page 14 of 21

https://github.com/omni-network/omni/commit/43f0a05cd336988f774be92b09b8469c66dd5610


Omni Network Application Security Assessment July 15, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. The block.prevdao is completely biasable by the proposer

As seen in the excerpt below, the block randao is the hash of all the transactions in the last block.
While on-chain dApps should not rely on block.prevrandao, if any on-chain dApp does rely on
block.prevrandao, an opportunistic proposer could brute-force a favorable randao value to extract
value out of on-chain dApps that use it as source of randomness.

// startBuild triggers the building of a new execution payload on top of the
current execution head.

// It returns the EngineAPI response which contains a status and payload ID.
func (k *Keeper) startBuild(ctx context.Context, appHash common.Hash,

timestamp time.Time) (engine.ForkChoiceResponse, error) {
...
attrs := &engine.PayloadAttributes{

Timestamp: ts,
Random: head.Hash(), // We use head block hash as randao.
SuggestedFeeRecipient: k.feeRecProvider.LocalFeeRecipient(),
Withdrawals: []*etypes.Withdrawal{}, // Withdrawals not supported yet.
BeaconRoot: &appHash,

}
...
return resp, nil

}

4.2. Portal calls cannot be refunded if they fail

If portal calls to staking.sol such as Delegate or CreateValidator fail, the stake/payment is not re-
fundable. Users should bewary to double-check that the correct payments are beingmade as they
could accidentally self-delegate and lose funds.

Zellic © 2024 ← Back to Contents Page 15 of 21



Omni Network Application Security Assessment July 15, 2024

4.3. Validators cannot unstake

Once validators join the network and bond their stake, there is no way for validators to unstake
their stake. The only possibility is to be jailed or to not vote on blocks. This is a feature in devel-
opment.

Zellic © 2024 ← Back to Contents Page 16 of 21



Omni Network Application Security Assessment July 15, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in themodules and created awritten threatmodel for somecritical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Module: keeper.go

ExtendVote

The ExtendVote is the functionality responsible for handling how the validator votes and what they
submit.

Firstly, the validator retrieves its votes on blocks that it has seen before; this is stored on disk. It then
validates these votes by streams. It ensures this by checking various conditions:

• Is the vote's blockheader's chainId a valid one (is it supported)?
• Is the vote fresh enough? (Does it pass the windowCompare function?)

Following this, the code is mostly logs, and the votes are returned in vote form.

VerifyVoteExtension

The VerifyVoteExtension is used by all validators to ensure that the votes that were extended are
valid, that a malicious proposer is not sending old votes, and that the votes sent to other validators
are indeed votes signed by the validator and not random votes.

The conditions it verifies are the following:

• Are the votes valid (the block headers are the correct size, among other checks such as
the vote being signed by the validator in the vote)?

• Is the vote signed by the validator who extended it?
• Is the vote's blockheader's chainId a valid one (is it supported)?
• Is the vote fresh enough? (Does it pass the windowCompare function?)

BeginBlock

The BeginBlock handler is called at the start of each block. It deletes all attestations and signatures
before BlockHeight - trimLag (inclusive). It creates an iterator from block 0 up to BlockHeight
- trimLag. Before deletion, it checks that each attestation does not surpass the latest approved
attestation for the given chain. Then it deletes the corresponding signatures and attestation from
the sigTable and attTable in the keeper.

Zellic © 2024 ← Back to Contents Page 17 of 21



Omni Network Application Security Assessment July 15, 2024

EndBlock

The EndBlock handler is called at the end of each block. It approves any pending attestations from
the attTable in the keeper.

Firstly, it checks the BlockHeight and returns if it is the first block (as there are no attestations to ap-
prove). Then, it createsan iteratorwithall thependingattestations inattTable. Foreachattestation,
it gets the block offset for the latest approved attestation in that chain. It verifies that the attestation
is for the next block; otherwise, it is skipped.

After, it retrieves the signatures for each attestation and verifies that it is approved by the active
validator set from the previous block. It checks that the total power from the validators who have
voted to approve exceeds two thirds of the total validator set power. Any signatures from validators
that were not a part of the active validator set from the previous block are deleted.

If the approval fails, it checks if there is already a finalized attestation that overrides the current one.
If so, it updates the attestation status to approved. The invalid signatures are then deleted. The
attestation is approved, andattTable is updatedwith theapprovedattestation. The latest approved
attestation's block offset is updated in the cache. After the attestations are approved, votes behind
theminimum vote window are removed.

5.2. Module: msg_server.go

MsgAddVotes

Thismessage is calledwith all aggregated voteswhen a block is finalized. The signature verification
on the votes are performed in the same way as in processProposal. It checks that the signatures
of every vote is from active validator sets of previous blocks. It then adds the aggregate votes as
pending attestations to the store. The vote is merged if the attestation already exists.

After the attestations are added to the store, it updates the voter state with the local headers and
sets the status to "committed".

5.3. Module: proposal_server.go

ProcessProposal

The ProcessProposal handler uses the attest module to verify all the aggregated votes in a pro-
posed block.

It first verifies that all the votes are valid by checking the signature against the attestation root hash
and the validator address. Then it fetches the chain ID from the block header and verifies that it is
supported.

Thereafter, there are two constraints:

1. All the votes are fromactive validators. Note that this is checked against active validators
from the previous block since vote extensions are delayed by one block.

Zellic © 2024 ← Back to Contents Page 18 of 21



Omni Network Application Security Assessment July 15, 2024

2. Verify that the vote block header is within the vote window.

It then updates the voter states with the local headers and sets the status to "proposed".

5.4. Module: keeper.go

EndBlock

The EndBlock routine for valsync is responsible for keeping validator set updates in sync across the
chains such that the endpoints can properly account for new or removed validators when process-
ing attestations.

It is also responsible for signaling to the validators themselves whether they are a validator or not,
subscribed listeners will stop/start voting based on the validator-set updates they received.

It does this by initially running the Stakingmodule's EndBlock and parsing the updates it returns.

It merges the validator-set updates with the last validator set, resulting in the current validator set.
It then adds these to the ORM table valSetTable. It also does checks to ensure that one validator
does not have toomuch stake, control consensus, or take down the chain.

It emits a message to the portal. It does this by adding the block and the message to various ORM
tables, which will be queried when the validator fetches messages for the Omni consensus chain.
Then it initializes any waiting subscribers.

Then, it gets the next unattested validator set and checks if that validator set was attested to. If so, it
marks it as attested in the valSetTable and updates any subscribed listeners.

5.5. Module: abci.go

PrepareProposal

Firstly, a defer is used to ensure that any panics are caught and logged for later inspection. Then, if
it is the first block, it's then left empty to account for a quirk. Then if an optimistic payload build was
executed, the built Geth payload is retrieved. Otherwise, geth is asked to build a payload waiting
k.BuildDelay seconds. It thenmarshals the retrieved data into a MsgExecutionPayload.

Then, it retrieves the votes from the last voting round to include in this block. However, there is no
bindingof votes from the last voting round to theproposedblocks vote's; this related toFinding3.1. ↗,
where a proposer can limitlessly vote to cause a chain halt.

Then, theparent block's important events (XChain calls, evmstaking, evmslashing) are collectedand
added to the block.

After, thesemessages aremarshaled into a block as TXs, and the block is proposed.

Zellic © 2024 ← Back to Contents Page 19 of 21



Omni Network Application Security Assessment July 15, 2024

PostFinalize

ThePostFinalize isusedand is importantas it is calledafter thefinalizationofablock. Itspurpose is
to start an optimistic build if the validator is going to be the next proposer. Once the validator knows
it will be the next proposer, it calls the execution layer to start building a block and sets in storage
the payloadID of the optimize build. Next time PrepareProposal is called, this block can be fetched
must faster instead of waiting for the block to be built.

5.6. Module: msg_server.go

ExecutionPayload

This is the function that is called when a block is finalized and MsgExcecutionPayload is delivered.

First, the payload is verified again, similarly to how it is verified in octane's processProposal:

• There cannot be any EVMbeacon contract withdrawals.
• The fee recipient is 0xDEAD.
• Gethmust accept the payload as a possible new block (pushPayload).

After, it is pushed as a possible new block to the execution layer, and using the engine API, it is final-
ized as the block head.

Then, the lastblock'sagreed-uponeventsaredelivered. Thiscouldbecreatingvalidatorsor increas-
ing self-delegation for a validator. However, any failures in event delivery are ignored, andpanics are
recovered.

The recorded latest execution head is then updated.

5.7. Module: ProcessProposal

ProcessProposal

The proposed payload is verified against set invariants.

• There cannot be any EVMbeacon contract withdrawals.
• The fee recipient is 0xDEAD.
• Gethmust accept the payload as a possible new block (pushPayload).

Then, the events in theblock are checked to ensure they are not fabricated. This is doneby checking
the proposed important events against the important events in the last block (done by each valida-
tor).

Zellic © 2024 ← Back to Contents Page 20 of 21



Omni Network Application Security Assessment July 15, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the Omni Network.

During our assessment on the scopedOmniNetworkmodules, wediscovered twofindings. No crit-
ical issues were found. One finding was of high impact and the other finding was informational in
nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 21 of 21


	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Omni Network
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Chain halt due to unbounded votes by proposer
	Possible race condition in valsync init

	Discussion
	The block.prevdao is completely biasable by the proposer
	Portal calls cannot be refunded if they fail
	Validators cannot unstake

	Threat Model
	Module: keeper.go
	Module: msg_server.go
	Module: proposal_server.go
	Module: keeper.go
	Module: abci.go
	Module: msg_server.go
	Module: ProcessProposal

	Assessment Results
	Disclaimer


