
Prepared for
Tyler Tarsi
Omni Network

Prepared by
Jinseo Kim
Vlad Toie
Zellic

March 29, 2024

Omni AVS
Smart Contract Security Assessment

Omni AVS Smart Contract Security Assessment March 29, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Omni AVS 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Share forunsupportedstrategyofoperator triggers infinite loop in_getSelfDel-
egations 11

3.2. Minimum amount of staking is only checked in the registration 13

3.3. States are not automatically synced 15

3.4. Precision loss in weight-calculating logic with lowmultipliers 17

4. Discussion 18

4.1. EigenLayer is being actively developed 19

Zellic © 2024 ← Back to Contents Page 2 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

5. ThreatModel 19

5.1. Module: OmniAVS.sol 20

5.2. Module: Omni.sol 27

6. Assessment Results 28

6.1. Disclaimer 29

Zellic © 2024 ← Back to Contents Page 3 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 29

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Omni AVS Smart Contract Security Assessment March 29, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Omni Network from March 18th to March 29th, 2024.
During this engagement, Zellic reviewedOmniAVS’s code for security vulnerabilities, design issues,
and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• How are the states synchronized between themain chain and the Omni side chain?
• What checks are in place to ensure that the Operators are not malicious?
• How is it determined that theOperators have staked enoughETH tobe considered valid?
• Does the protocol follow all the EigenLayer security standards? Are all the assumptions
valid?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

During this assessment, the currently limited integration of the reviewed code with the EigenLayer
protocol, as well as the reliance on off-chain components for further cross-chain validation, was a
limitation in the overall threat modeling.

1.4. Results

During our assessment on the scopedOmni AVS contracts, we discovered four findings. No critical
issueswere found. Twofindingswere of high impact, onewasofmedium impact, and the remaining
finding was informational in nature.

Zellic © 2024 ← Back to Contents Page 5 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

Additionally, Zellic recorded its notes and observations from the assessment for Omni Network’s
benefit in the Discussion section (4. ↗) at the end of the document.

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 2

■ Medium 1

■ Low 0

■ Informational 1

Zellic © 2024 ← Back to Contents Page 6 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

2. Introduction 2.1. About Omni AVS

Omni Network contributed the following description of Omni AVS:

Omni is an L1 blockchain secured by restaked $ETH. It secures cross-rollup messages, along
with an EVMexecution environment. For the purposes of this first audit, wewon’t be covering
the Omni chain, just the restaking component of the protocol.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract’s interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect

Zellic © 2024 ← Back to Contents Page 7 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

its impact. For instance, a highly severe issue’s impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an “Informational”
findinghigher thana “Low”finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

2.3. Scope

The engagement involved a review of the following targets:

Omni AVS Contracts

Repository https://github.com/omni-network/omni/ ↗

Version omni: 6c5139354de2d3be65bb8db94a0460afdbcfe3e1

Programs • Omni
• OmniAVS

Type Solidity

Platform EVM-compatible

2.4. Project Overview

Zellic was contracted to perform a security assessment with two consultants for a total of two
person-weeks. The assessment was conducted over the course of two calendar weeks.

Zellic © 2024 ← Back to Contents Page 9 of 29

https://github.com/omni-network/omni/

Omni AVS Smart Contract Security Assessment March 29, 2024

Contact Information

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Jinseo Kim
Engineer
jinseo@zellic.io ↗

Vlad Toie
Engineer
vlad@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

March 18, 2024 Kick-off call

March 18, 2024 Start of primary review period

March 29, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 29

mailto:chad@zellic.io
mailto:jinseo@zellic.io
mailto:vlad@zellic.io

Omni AVS Smart Contract Security Assessment March 29, 2024

3. Detailed Findings 3.1. Share for unsupported strategy of operator triggers infinite loop in _get-
SelfDelegations

Target OmniAVS

Category CodingMistakes Severity High

Likelihood Medium Impact High

Description

OmniAVS calculates the personal stake amount and delegated stake amount of an operator sepa-
rately. To calculate an operator’s personal stake amount, OmniAVS fetches the delegatable shares
of an operator, which is fully delegated to the operator by the design of EigenLayer. Following is the
code of the function _getSelfDelegations for this behavior:

function _getSelfDelegations(address operator) internal view returns (uint96)
{
(IStrategy[] memory strategies, uint256[] memory shares)
= _delegationManager.getDelegatableShares(operator);

uint96 staked;
for (uint256 i = 0; i < strategies.length;) {

IStrategy strat = strategies[i];

// find the strategy params for the strategy
StrategyParam memory params;
for (uint256 j = 0; j < _strategyParams.length;) {

if (address(_strategyParams[j].strategy) == address(strat)) {
params = _strategyParams[j];
break;

}
unchecked {

j++;
}

}

// if strategy is not found, do not consider it in stake
if (address(params.strategy) == address(0)) continue;

staked += _weight(shares[i], params.multiplier);
unchecked {

i++;

Zellic © 2024 ← Back to Contents Page 11 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

}
}

return staked;
}

The function is implemented using a nested for loop; the outer loop iterates over the strategies of
the operator, and the inner loop iterates over the strategy/strategies registered in OmniAVS.

If a strategy of an operator is not registered in OmniAVS, it continues the outer loop. However, be-
cause i is not incremented, the loop iterates for the same strategy again. This leads to an infinite
loop.

Impact

If an operator deposits to the strategy unsupported in OmniAVS, _getOperators would run indef-
initely instead of returning the result. This makes syncing the list of operators impossible until the
operator withdraws from the strategy or is manually ejected.

Recommendations

Consider refactoring the logic to prevent the outer loop from getting stuck in an unsupported strat-
egy.

Remediation

This issue has been acknowledged by Omni Network, and a fix was implemented in commit
fc19c261 ↗.

This finding was brought to our attention by Omni Network prior to the official report being submit-
ted.

Zellic © 2024 ← Back to Contents Page 12 of 29

https://github.com/omni-network/omni//commit/fc19c2619666c0a1a937f9e0cc1624ba026989f1

Omni AVS Smart Contract Security Assessment March 29, 2024

3.2. Minimum amount of staking is only checked in the registration

Target OmniAVS

Category Business Logic Severity High

Likelihood Medium Impact High

Description

When an operator registers into OmniAVS, it is checked that the operator’s stake is greater than the
minimum amount of staking.

function registerOperator(
bytes calldata pubkey,
ISignatureUtils.SignatureWithSaltAndExpiry memory operatorSignature

) external whenNotPaused {
address operator = msg.sender;

// ...
require(_getTotalDelegations(operator) >= minOperatorStake, "OmniAVS: min
stake not met");
// ...

}

Due to the nature of EigenLayer’s architecture, the stake can change throughout the lifetime of a
contract and should thus constantly be checked against theminimum threshold. There aremultiple
reasons for a possible decrease in stake, though the most likely scenario is that a staker (i.e., the
normal user that delegates to operators) withdraws their stake from the operator.

Impact

An operator who does not have enough stake would remain in the list of operators, unless they are
manually ejected by the owner of OmniAVS.

If the allowlist is disabled and anyone is allowed to register into OmniAVS, a malicious user can fill
the maximum number of operators in order to interrupt the registration function without actually
staking theminimum amount of staking for each user.

Zellic © 2024 ← Back to Contents Page 13 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

Recommendations

Consider performing the checkwhen generating the list of operators and/or automatically deregis-
tering operators who have stake below the threshold.

Alternatively, prune the list of authorized operators whenever syncWithOmni is called, so that the
other side of the chain only allows legitimate and healthy operators.

Remediation

This issue has been acknowledged by Omni Network.

OmniNetworkstated that theminimumthreshold toobtain thevotingpoweron theconsensuschain
will be separately managed and checked. Omni Network also stated that they will enable the al-
lowlist mechanism and work with trusted operators during the first phase, and they plan to imple-
ment the pruning operation, which ejects operators below theminimumamount of stake and/or the
direct ejection from the consensus chain. Moreover, Omni Network has stated the following:

In the long term, ejecting operators that are not actively validating (zero voting power), may
be necessary. When our AVS operator set is less permissioned (allowlist disabled), it will be
important to address scenario you’ve outlined - in which “malicious user can fill themaximum
number of operators in order to interrupt the registration functionwithout actually staking the
minimum amount of staking for each user.” Though we are hopeful EigenLayer’s slashing de-
sign will restrict the easewith which users can undelegate to operators.

Additionally, depending on EigenLayer’s reward mechanism, it may be important to quickly
prune operators that are no longer validating, so that rewards are not paid to inactive oper-
ators.

For both cases, we can introduce consensus chain controlled ejections. Our consensus chain
already relays validator set updates to portal contracts. Extending this mechanism to remove
operators without voting power from our AVS contract is feasible.

Zellic © 2024 ← Back to Contents Page 14 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

3.3. States are not automatically synced

Target OmniAVS

Category Business Logic Severity Medium

Likelihood High Impact Medium

Description

The OmniAVS contract forwards the current validators from one side of the chain to the other via
the OmniPortal. Currently, the only way of performing the sync between both sides of the chain is
to call the syncWithOmni functionmanually, by essentially querying the current total stake for all the
currently registered validators.

/**
* @notice Sync OmniAVS operator stake & delegations with Omni chain.
*/
function syncWithOmni() external payable whenNotPaused {

Operator[] memory ops = _getOperators();
omni.xcall{ value: msg.value }(

omniChainId,
ethStakeInbox,
abi.encodeWithSelector(IEthStakeInbox.sync.selector, ops),
_xcallGasLimitFor(ops.length)

);
}

Impact

A potential issue may arise here if an operator has deregistered from one side of the chain, and no
calls to syncWithOmni would occur in the meanwhile. In this case, the operator would still be con-
sidered valid on the other side of the chain, even though they have completely removed their stake.

Recommendations

We recommend syncing with the Omni chain on every operation that has to do with the update of
the operator’s stake or status (i.e., registration/deregistration).

Zellic © 2024 ← Back to Contents Page 15 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

Remediation

This issue has been acknowledged by Omni Network.

Omni Network stated that they will take one of the following actions:

• move the deregisterOperator function out of the AVS contract, to a separate contract
on Omni’s EVM.

• keep the deregsiterOperator function in the AVS contract, but transform it into a two-
step process. In this case, Omni’s EVM contract must acknowledge the de-registration
before the actual removal from the AVS contract.

For thecurrent release,OmniNetworkhas removed thederegisterOperator function fromtheAVS
contract, as per commit b4e82eb ↗. Therefore, the only way for an operator to deregister is to con-
tact the Omni team, whowill then perform the deregistration via ejectOperator.

Additionally, Omni Network stated that:

If users can undelegate from operators freely, without being subject to any delay, we must
consider this when designing how to incorporate user delegations into validator set updates.
Granting voting power 1:1 with user delegations would not be appropriate. If operators can
deregister / withdrawal at any time, and immediately remove their capital from risk of slash-
ing, our AVSdesign is incompatiblewith EigenLayer. Wedo not believe thiswill be the case, as
their current communications / documentation / source code suggest operator withdrawals
/ de-registrations will be subject to some delay, to account for slashing. We hope that user
delegations are subject to this same delay.

Zellic © 2024 ← Back to Contents Page 16 of 29

https://github.com/omni-network/omni/commit/b4e82eb38fb2f09f1f53aeebafaf93ec2920910d

Omni AVS Smart Contract Security Assessment March 29, 2024

3.4. Precision loss in weight-calculating logic with lowmultipliers

Target OmniAVS

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

A staker deposits to a strategy to receive shares for the strategy and delegate their shares to an
operator. OmniAVS calculates the weight of the registered operator by multiplying the shares and
the predeterminedmultiplier:

uint256 internal constant STRATEGY_WEIGHTING_DIVISOR = 1e18;

function _getTotalDelegations(address operator) internal view returns (uint96)
{
// ...

for (uint256 i = 0; i < _strategyParams.length;) {
// ...
total += _weight(shares, params.multiplier);
// ...

}

return total;
}

function _weight(uint256 shares, uint96 multiplier)
internal pure returns (uint96) {
return uint96(shares * multiplier / STRATEGY_WEIGHTING_DIVISOR);

}

Note that themultiplication of shares and multiplier is divided by STRATEGY_WEIGHTING_DIVISOR,
which is 10^18. If themultiplier is too low, such as one, a significant part of precision would be lost.

Impact

If themultiplier is too low, such as one, the part of shareswill be dismissed in theweight-calculation
logic. For example, if 1.9 stETH is staked, the shares for 0.9 stETH will not be considered for calcu-
lating weight.

Zellic © 2024 ← Back to Contents Page 17 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

Recommendations

Consider refactoring the _weight function to minimize precision loss. One approach would be to
perform the division operation first and then themultiplication. This approach should only be used,
however, on the assumption that the shares value is larger than STRATEGY_WEIGHTING_DIVISOR. Al-
ternatively, another option would be ensuring that only large multipliers are used (i.e., larger than
STRATEGY_WEIGHTING_DIVISOR).

Remediation

This issue has been acknowledged by Omni Network. Omni Network stated that they will use large
multipliers, such as 10^18, for their deployments.

Zellic © 2024 ← Back to Contents Page 18 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. EigenLayer is being actively developed

The core structural design of EigenLayer is not yet finalized and could undergo changes. Despite
our efforts to assess any potential conflicts between Omni AVS and both the current and potential
future designs of EigenLayer, our ability to conduct a comprehensive integration assessment was
limited due to the lack of detailed information about EigenLayer’s future design.

OmniNetwork stated they plan to deploy the protocol in twophases— theywill deploy the restaking
smart contracts without implementing slashing and rewardmechanisms in the first phase, which is
the scopeof this audit. The secondphasewill be deployed after the design of EigenLayer is finalized
and implemented.

One should note that Slasher, the key component of EigenLayer, is under active development and its
design decisionsmay affect the functionality of Omni AVS. For instance, during our audit, we found
that the current design of Slasher, which is deployed on mainnet, is not compatible with the Omni
AVS because an operator must opt in to slashing and the AVS should confirm this before accept-
ing their registration. We communicated this information to Omni Network, and we were informed
that EigenLayer stated that the future design of Slasher will not involve an opt-in process, unlike the
current Slasher contract onmainnet.

Additionally, since theslashing feature isnot implementedyet,OmniAVSshouldenable theallowlist
mechanism and collaborate with trusted operators during the initial phase. Omni Network con-
firmed their intention to do so.

Overall, it is our opinion that Omni Network should actively communicatewith the EigenLayer com-
munity inorder toensure that the futuredesignchangesofEigenLayerdonotbreak the functionality
of Omni AVS.

Zellic © 2024 ← Back to Contents Page 19 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in thecontractsandcreatedawritten threatmodel for somecritical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Module: OmniAVS.sol

Function: deRegisterOperator()

Should allow deregistration of operators from the AVS.

Branches and code coverage (including function calls)

Intended branches

• Assumes the operator has not been restricted from deregistering after being caught as
malicious. Currently not enforced as there is no implementation of the Slasher.

Test coverage
• Should remove the operator from the operators array aswell as remove its pubkey from
the _operatorPubkeysmapping.

Test coverage

Negative behavior

• Should not be callable if the contract is paused. Enforced through the whenNotPaused
modifier.

Test coverage
• Should not be callable if msg.sender is not actually an operator. Enforced through the
require statement.

Test coverage

Function: initialize(address owner_, IOmniPortal omni_, uint64 om-
niChainId_, address ethStakeInbox_, uint96 minOperatorStake_, uint32
maxOperatorCount_, StrategyParam[] calldata strategyParams_)

Initializes the OmniAVS contract.

Inputs

• owner_
• Validation: None.

Zellic © 2024 ← Back to Contents Page 20 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

• Impact: The address of the contract owner.
• omni_

• Validation: None.
• Impact: The Omni portal contract.

• omniChainId_
• Validation: None.
• Impact: The Omni chain ID.

• ethStakeInbox_
• Validation: None.
• Impact: The EthStakeInbox contract address.

• minOperatorStake_
• Validation: None.
• Impact: Theminimum operator stake.

• maxOperatorCount_
• Validation: None.
• Impact: Themaximum operator count.

• strategyParams_
• Validation: None.
• Impact: List of accepted strategies and their multipliers.

Branches and code coverage (including function calls)

Intended branches

• Set the OmniPortal contract.
Test coverage

• Set the OmniChainId.
Test coverage

• Set the XCallGasLimits.
Test coverage

• Set the EthStakeInbox.
Test coverage

• Set the MinOperatorStake.
Test coverage

• Set the MaxOperatorCount.
Test coverage

• Set the StrategyParams.
Test coverage

• Enable the allowlist.
Test coverage

• Transfer ownership to the owner_.
Test coverage

Zellic © 2024 ← Back to Contents Page 21 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

Negative behavior

• Should not be callablemultiple times. Enforced through the initializermodifier.
Test coverage

Function: registerOperator(bytes calldata pubkey, ISignature-
Utils.SignatureWithSaltAndExpiry memory operatorSignature)

Allows the registration of operators within the AVS.

Inputs

• pubkey
• Validation: Validated that it matches themsg.sender pubkey.
• Impact: The public key of the operator.

• operatorSignature
• Validation: Assumed to be validatedwithin the _avsDirectory
• Impact: The signature that wouldmatch the registration parameters.

Branches and code coverage (including function calls)

Intended branches

• Should forward theopt-in call to theSlasher. Currently not implemented, as EigenLayer’s
implementation of Slasher has not yet been finalized.

Test coverage
• Should add the operator to the AVS. Handled in _addOperator.

Test coverage
• Assumes that the signature is properly verifiedwithin the AVSDirectory.

Test coverage
• Should forward the registration call to the AVSDirectory. Handled in _avsDirec-
tory.registerOperatorToAVS.

Test coverage

Negative behavior

• Should not be callable when paused. Enforced through the whenNotPausedmodifier.
Test coverage

• Should not allow an operator that does not match the pubkey.
Test coverage

• Should not allow an operator that is not in the allowlist, should the allowlist be enabled.
Test coverage

• Should not allow an operator that is already an operator.
Test coverage

Zellic © 2024 ← Back to Contents Page 22 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

• Should not allow an operator if themaximum operator count has been reached.
Test coverage

• Should not allow an operator if theminimum stake has not beenmet.
Test coverage

Function: syncWithOmni()

Allows syncing of operators’ stake and delegations with the Omni chain.

Branches and code coverage (including function calls)

Intended branches

• Retrieves the current list of operators.
Test coverage

• Forwards the call to OmniPortal via xcall to sync the operators’ stake and delegations
with the Omni chain.

Test coverage
• Assumes that msg.value is enough to cover the fee required for the sync.

Test coverage

Negative behavior

• Should not allow forwarding of the call if any of the operators are below the threshold.
Currently not enforced.

Test coverage
• Should not be callable if the contract is paused. Enforced through the whenNotPaused
modifier.

Test coverage

Function: _setEthStakeInbox(address inbox)

Allows setting the EthStakeInbox contract address for the AVS.

Inputs

• inbox
• Validation: None.
• Impact: The EthStakeInbox contract address.

Branches and code coverage (including function calls)

Intended branches

Zellic © 2024 ← Back to Contents Page 23 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

• Set the ethStakeInbox.
Test coverage

Negative behavior

• Shouldnotbecallablebyanyone (ensured through theonlyOwnermodifier in the function
definition).

Test coverage

Function: _setMaxOperatorCount(uint32 count)

Allows setting themaximum operator count for the AVS.

Inputs

• count
• Validation: None.
• Impact: Sets themaximum operator count for the AVS.

Branches and code coverage (including function calls)

Intended branches

• Set themaximum operator count for the AVS.
Test coverage

Negative behavior

• Should not allow setting the max operator to a value smaller than the current number of
operators. Currently not enforced.

Test coverage
• Shouldnotbecallablebyanyone (ensured through theonlyOwnermodifier in the function
definition).

Test coverage

Function: _setMinOperatorStake(uint96 stake)

Sets theminimum operator stake for the AVS.

Inputs

• stake
• Validation: None.
• Impact: Theminimum operator stake for the AVS.

Zellic © 2024 ← Back to Contents Page 24 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

Branches and code coverage (including function calls)

Intended branches

• Set theminimum operator stake for the AVS.
Test coverage

Negative behavior

• Should not allow setting the min operator stake to a value smaller than what the current
operators have staked. Currently not enforced.

Test coverage
• Alternatively, should remove all operators that do not meet the newmin operator stake.
Currently not enforced.

Test coverage
• Shouldnotbecallablebyanyone (ensured through theonlyOwnermodifier in the function
definition).

Test coverage

Function: _setOmniChainId(uint64 chainId)

Allows setting the Omni chain ID for the AVS.

Inputs

• chainId
• Validation: None.
• Impact: The Omni chain ID.

Branches and code coverage (including function calls)

Intended branches

• Set the omniChainId.
Test coverage

• Assumed to not change / very rarely change, as it would imply the AVS is moving to a
different chain.

Test coverage

Negative behavior

• Should be different than block.chainid. Currently not enforced.
Test coverage

• Shouldnotbecallablebyanyone (ensured through theonlyOwnermodifier in the function
definition).

Test coverage

Zellic © 2024 ← Back to Contents Page 25 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

Function: _setOmniPortal(IOmniPortal portal)

Allows setting the Omni portal contract for the AVS.

Inputs

• portal
• Validation: None.
• Impact: The Omni portal contract.

Branches and code coverage (including function calls)

Intended branches

• Set the omni contract.
Test coverage

Negative behavior

• Shouldnotbecallablebyanyone (ensured through theonlyOwnermodifier in the function
definition).

Test coverage

Function: _setStrategyParams(StrategyParam[] calldata params)

Allows setting the strategy parameters of the AVS.

Inputs

• params
• Validation: Checked that each strategy is not zero and that there are no dupli-
cates.

• Impact: Sets the strategy parameters of the AVS.

Branches and code coverage (including function calls)

Intended branches

• Implies that all the operators have stakes in the new strategies. Currently not enforced.
Test coverage

• Should delete existing strategy parameters.
Test coverage

Negative behavior

Zellic © 2024 ← Back to Contents Page 26 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

• Should not add strategies that the operators do not have stakes in. Currently not en-
forced.

Test coverage

Function: _setXCallGasLimits(uint64 base, uint64 perOperator)

Allows setting the xcall gas limits for the AVS.

Inputs

• base
• Validation: None.
• Impact: The base xcall gas limit.

• perOperator
• Validation: None.
• Impact: The per-operator additional xcall gas limit.

Branches and code coverage (including function calls)

Intended branches

• Set the base xcall gas limit.
Test coverage

• Set the per-operator additional xcall gas limit.
Test coverage

• Assumed these are forwarded/used in the xcall.
Test coverage

Negative behavior

• Shouldnotbecallablebyanyone (ensured through theonlyOwnermodifier in the function
definition).

Test coverage

5.2. Module: Omni.sol

Function: constructor(uint256 initialSupply, address recipient)

Defining the Omni ERC-20 token.

Inputs

• initialSupply

Zellic © 2024 ← Back to Contents Page 27 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

• Control: Fully controlled by the deployer.
• Constraints: None.
• Impact: The initial supply of the token to beminted.

• recipient
• Control: Fully controlled by the deployer.
• Constraints: None.
• Impact: The address that will receive the initial supply of the token.

Branches and code coverage

Intended branches

• Mint the entire initial supply to the recipient.
Test coverage

• Properly initialize the ERC20 and ERC20Permit contracts.
Test coverage

Negative behavior

• None.

Zellic © 2024 ← Back to Contents Page 28 of 29

Omni AVS Smart Contract Security Assessment March 29, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the EthereumMainnet.

During our assessment on the scopedOmni AVS contracts, we discovered four findings. No critical
issueswere found. Twofindingswere of high impact, onewasofmedium impact, and the remaining
finding was informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 29 of 29

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Omni AVS
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Share for unsupported strategy of operator triggers infinite loop in _getSelfDelegations
	Minimum amount of staking is only checked in the registration
	States are not automatically synced
	Precision loss in weight-calculating logic with low multipliers

	Discussion
	EigenLayer is being actively developed

	Threat Model
	Module: OmniAVS.sol
	Module: Omni.sol

	Assessment Results
	Disclaimer

