
Omni Network

Omni Chain Review 2
Security Assessment Report

Version: 2.1

October, 2024

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Scope . 3Approach . 3Coverage Limitations . 4Findings Summary . 4
Detailed Findings 5

Summary of Findings 6Nil Dereference In XBlock() . 7Lost Bridged Funds When Pausing ACTION_WITHDRAW . 8Incorrect Data Cost Calculation . 9Lack Of Support For Non-EVM Data Pricing . 11Unprotected Secret Files . 13Bridge Fee Requirement Is Too Strict . 15Incorrect OmniGasPump ETH Quote . 16Nested XMsgs Break MsgContext . 17Missing Validation Of cchain.SDKValidator Structure . 18Validator Addresses Not Verified Against Signature . 19Missing Storage Gap From OmniPortalStorage . 20Incorrect XCall Condition In XAppBase . 21Return nil Both For Error And abci.ValidatorUpdate . 22Miscellaneous General Comments . 23
A Test Suite 25

B Vulnerability Severity Classification 26

1

Omni Chain Review 2 Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Omni Network smartcontracts. The review focused solely on the security aspects of the Solidity implementation of the contract,though general recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Omni Network smart contracts containedwithin the scope of the security review. A summary followed by a detailed review of the discovered vulnera-bilities is then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification),an open/closed/resolved status and a recommendation. Additionally, findings which do not have direct securityimplications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Omni Network smart contracts.

Overview

Omni is a chain abstraction protocol that enables developers to create applications that are accessible acrossmultiple rollups. Apps can interact with the OmniPortal contract to send cross-chain messages.
This review focused on new features and components added to Omni such as confirmation levels, the L1-Omnibridge, and gas exchange contracts.

Page | 2

Omni Chain Review 2 Security Assessment Summary

Security Assessment Summary

Scope

The review was conducted on the files hosted on the omni repository.
The scope of this time-boxed review was strictly limited to the following files at commit 99cbad6:

• halo/app/

• halo/attest/

• halo/comet/

• halo/config/

• halo/evmslashing/

• halo/evmstaking/

• halo/evmupgrade/

• halo/portal/

• halo/registry/

• halo/valsync/

• lib/xchain/

• lib/cchain/

• octane/evmengine/

• contracts/core/src/

– libraries/

– octane/

– pkg/

– token/

– xchain/

The fixes of the identified issues were assessed at commit e6784af.
Note: third party libraries and dependencies, such as OpenZeppelin, were excluded from the scope of this assessment.

Approach

The manual review focused on identifying issues associated with the business logic implementation of the con-tracts. This includes their internal interactions, intended functionality and correct implementation with respectto the underlying functionality of the Ethereum Virtual Machine (for example, verifying correct storage/memorylayout). Additionally, the manual review process focused on identifying vulnerabilities related to known Solid-ity antipatterns and attack vectors, such as re-entrancy, front-running, integer overflow/underflow and correctvisibility specifiers.
To support this review, the testing team also utilised the following Solidity automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Page | 3

https://github.com/omni-network/omni/
https://github.com/omni-network/omni/commit/99cbad60ac3a368b20112cf788923d7b894f90b7
https://github.com/omni-network/omni/commit/e6784af1e058acbb08c3fed192f5642115e2c41f
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Omni Chain Review 2 Coverage Limitations

• Aderyn: https://github.com/Cyfrin/aderyn
For the Golang libraries andmodules, the review focused on internal interactions, intended functionality and cor-rect implementation with respect to the underlying functionality of the Go runtime. Known Golang antipatternssuch as integer overflow, floating point underflow, deadlocking, race conditions, memory and CPU exhaustionattacks and a multitude of panics including but not limited to nil pointer deferences, index out of bounds, calls
to panic() .
The following Golang automated testing tools were used:

• golangci-lint: https://golangci-lint.run/
• vet: https://pkg.go.dev/cmd/vet
• errcheck: https://github.com/kisielk/errcheck

Output for these automated tools is available upon request.

Coverage Limitations

Due to a time-boxed nature of this review, all documented vulnerabilities reflect best effort within the allotted,limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code, and anyrelated functionality, where majority of critical and high risk vulnerabilities were identified.

Findings Summary

The testing team identified a total of 14 issues during this assessment. Categorised by their severity:
• High: 1 issue.
• Medium: 4 issues.
• Low: 5 issues.
• Informational: 4 issues.

Page | 4

https://github.com/Cyfrin/aderyn
https://golangci-lint.run/
https://pkg.go.dev/cmd/vet
https://github.com/kisielk/errcheck

Omni Chain Review 2 Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Omni Network smartcontracts. Each vulnerability has a severity classification which is determined from the likelihood and impact ofeach issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status
OM2-01 Nil Dereference In XBlock() High Resolved

OM2-02 Lost Bridged Funds When Pausing ACTION_WITHDRAW Medium Closed

OM2-03 Incorrect Data Cost Calculation Medium Closed

OM2-04 Lack Of Support For Non-EVM Data Pricing Medium Closed

OM2-05 Unprotected Secret Files Medium Resolved

OM2-06 Bridge Fee Requirement Is Too Strict Low Resolved

OM2-07 Incorrect OmniGasPump ETH Quote Low Resolved

OM2-08 Nested XMsgs Break MsgContext Low Closed

OM2-09 Missing Validation Of cchain.SDKValidator Structure Low Resolved

OM2-10 Validator Addresses Not Verified Against Signature Low Resolved

OM2-11 Missing Storage Gap From OmniPortalStorage Informational Closed

OM2-12 Incorrect XCall Condition In XAppBase Informational Resolved

OM2-13 Return nil Both For Error And abci.ValidatorUpdate Informational Resolved

OM2-14 Miscellaneous General Comments Informational Resolved

6

Omni Chain Review 2 Detailed Findings

OM2-01 Nil Dereference In XBlock()

Asset lib/cchain/provider/xblock.go

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

A reachable nil pointer deference may occur in Block() causing a panic.
The function XBlock() on line [22] calls the portalBlock() function to get a pbtypes.BlockResponse at given height
/ offset. The portalBlock() function is defined in newABCIPortalFunc() , which calls queryClient.Block() , seen inthe following code segment.
func (c *queryClient) Block(ctx context.Context, in *BlockRequest, opts ...grpc.CallOption) (*BlockResponse, error) {

out := new(BlockResponse)
err := c.cc.Invoke(ctx, "/halo.portal.types.Query/Block", in, out, opts...)
if err != nil {

return nil, err
}
return out, nil

}

The definition of pbtypes.BlockResponse can be seen in the following code segment.
type BlockResponse struct {

Id uint64 `protobuf:"varint,1,opt,name=id,proto3" json:"id,omitempty"`
CreatedHeight uint64 `protobuf:"varint,2,opt,name=created_height,json=createdHeight,proto3" json:"created_height,omitempty"`
Msgs []*Msg `protobuf:"bytes,3,rep,name=msgs,proto3" json:"msgs,omitempty"`

}

Within the function XBlock() on line [43] each value in the array Msgs []*Msg array will be deferenced in the call
msg.ShardID() . If any of these values are nil , a nil deference panic will occur.
The likelihood is rated as medium as it requires a malicious response from the queryClient to trigger the panic.

Recommendations

Implement a check to for each msg in BlockResponse.Msgs to ensure the pointer is not nil before accessing themembers of the struct.

Resolution

The Omni team has decided to refactor all Comos module query protos array fields to be non-nullable by using gogo-protobuf features. This change converts all pointer types to non-pointers. The change was implemented in PR #2130.

Page | 7

https://github.com/omni-network/omni/pull/2130

Omni Chain Review 2 Detailed Findings

OM2-02 Lost Bridged Funds When Pausing ACTION_WITHDRAW

Asset OmniBridgeL1.sol & OmniBridgeNative.sol

Status Closed: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

Pausing ACTION_WITHDRAW in the Omni bridges can lead to bridged funds becoming permanently lost.
When a user calls bridge() to bridge OMNI tokens, an XMsg is sent to the destination chain to call the destination
chain bridge’s withdraw() function.
However, if the withdraw() function is paused by pausing the ACTION_WITHDRAW action, the XMsg will fail to be exe-cuted, causing any bridged tokens to be permanently lost.
In this case, there is no way to recover the bridged tokens, even if OMNI is being bridged to the Omni chain as the
OmniBridgeNative.claimable mapping is not updated when ACTION_WITHDRAW is paused.

Recommendations

Ensure that ACTION_DEPOSIT is paused on the source chain bridge before pausing ACTION_WITHDRAW on the destination
chain bridge. Also, ensure that any pending withdraw() XMsgs are executed before pausing ACTION_WITHDRAW .
Alternatively, a similar mechanism to the OmniGasPump.owed mapping can be implemented in both bridge contracts toallow users to retry bridging if it fails.

Resolution

The Omni team has acknowledged this issue with the following comment:

"We are aware of this issue and intend to add checks to our [offchain code] to prevent unsafe pause states."

Page | 8

Omni Chain Review 2 Detailed Findings

OM2-03 Incorrect Data Cost Calculation
Asset FeeOracleV1.sol

Status Closed: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

There are components to the data cost calculation that are incorrect or do not account for gas and asset price volatility,which can lead to a fee that is lower than intended.
The FeeOracleV1.feeFor() function uses the size of the transaction input data (also referred to as calldata) to calculate
dataGas . This assumes that rollups only post transaction input data and does not include other transaction fields suchas transaction nonce, gas price, and gas limit.
IFeeOracleV1.ChainFeeParams storage dataP = _feeParams[execP.postsTo];

// ...

// @audit dataGasPrice uses the current `dataP.gasPrice` and `dataP.toNativeRate` values
uint256 dataGasPrice = dataP.gasPrice * dataP.toNativeRate / CONVERSION_RATE_DENOM;

// 16 gas per non-zero byte, assume non-zero bytes
// TODO: given we mostly support rollups that post data to L1, it may be cheaper for users to count
// non-zero bytes (consuming L2 execution gas) to reduce their L1 data fee
// @audit data.length refers to the size of the cross-chain call's calldata
uint256 dataGas = data.length * 16;

Rollups such as Optimism and Base post the entire signed transaction serialised with RLP encoding. This means thatthe size of the posted data for a transaction is larger than just the transaction input data.
Furthermore, the dataGasPrice used in data cost calculation does not account for the volatility of the destinationchain’s gas price, as well as the volatility in the exchange rate of the destination chain’s native token relative to thesource chain’s native token. These values can vary greatly at time of execution of the XMsg in OmniPortal.xsubmit() ,resulting in the user paying less than the intended amount of fees.

Recommendations

To account for the data size of the total RLP encoded signed transaction, add a fixed amount of data to the data costcalculation as overhead.
To account for the volatility in the destination chain’s gas price and the exchange rate of the destination chain’s nativetoken relative to the source chain’s native token, add a premium to dataGasPrice that is dependent on the confirmationlevel of the XMsg . For example, an XMsg that uses the latest confirmation level can be charged a 10% premium, while
an XMsg that uses the finalized confirmation level can be charged a 20% premium since the delay between calling
xcall() and xsubmit() is longer.

Page | 9

Omni Chain Review 2 Detailed Findings

Resolution

The Omni team has acknowledged this issue with the following comment:

"We are aware of this issue and have performed PnL analysis on our testnet to ensure that we do not undercharge
for data. We are also working on FeeOracleV2 to address all fee-related issues brought up in this review."

Page | 10

Omni Chain Review 2 Detailed Findings

OM2-04 Lack Of Support For Non-EVM Data Pricing
Asset FeeOracleV1.sol

Status Closed: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

FeeOracleV1.feeFor() does not support rollups that use blobs as opposed to EVM calldata to post data, and hencewill overprice the fee for data availability.
Since the Ethereum Cancun upgrade, most rollups that previously used Ethereum calldata for data availability haveswitched to Ethereum blobs. Blobs have their own gas fee market, which is separate from the execution layer's gas feemarket.
The FeeOracleV1.feeFor() function assumes that the destination chain uses EVM calldata to post data, and calculatesthe cost of data availability based on the execution gas price of the EVM chain that the rollup posts data to.
IFeeOracleV1.ChainFeeParams storage dataP = _feeParams[execP.postsTo];

// ...

// @audit dataP.gasPrice represents EVM execution gas price, e.g. ETH L1 gas price
uint256 dataGasPrice = dataP.gasPrice * dataP.toNativeRate / CONVERSION_RATE_DENOM;

// 16 gas per non-zero byte, assume non-zero bytes
// TODO: given we mostly support rollups that post data to L1, it may be cheaper for users to count
// non-zero bytes (consuming L2 execution gas) to reduce their L1 data fee
// @audit Calldata costs 16 gas per non-zero byte
uint256 dataGas = data.length * 16;

This means that the estimated data cost calculated in FeeOracleV1.feeFor() will be substantially higher than the actualcost, since blobs have different gas costs and pricing dynamics compared to calldata that result to lower gas fees forrollup users.
The current fee calculationmechanism is also inflexible in that it does not support destination chains that use alternativedata availability services that aren’t Ethereum blobs, such as Celestia or EigenDA.

Recommendations

Instead of using another EVM chain’s gas price and calldata to estimate the cost of data availability, create a new
struct that stores the gas price and also gas-per-byte cost for data availability. An example is shown below:
struct DataCostParams {

uint256 gasPrice;
uint256 gasPerByte;

}

Replace ChainFeeParams.postsTo with ChainFeeParams.dataCostId , such that each destination chain can point to a
DataCostParams struct that stores the gas price and gas-per-byte cost for a type of data availability service.
For example, multiple rollups like Optimism, Base, and Arbitrum can all use the same ChainFeeParams.dataCostId thatpoints to the DataCostParams for Ethereum blobs. In this case, the gasPerByte for an Ethereum blob is 1 (calculation

Page | 11

Omni Chain Review 2 Detailed Findings

shown below).
This calculation assumes that the rollup uses the entire blob
BLOB_GAS_PER_BYTE = BLOB_SIZE_IN_BYTES / GAS_PER_BLOB

= (BYTES_PER_FIELD_ELEMENT * FIELD_ELEMENTS_PER_BLOB) / GAS_PER_BLOB
= (32 * 4096) / (2**17)
= 1

Keep in mind that this solution does not account for any data compression that may be applied to reduce the size ofthe data posted for data availability.

Resolution

The Omni team has acknowledged this issue with the following comment:

"We are working on FeeOracleV2 to address these issues, though it is not a high priority as our PnL metrics on
testnet shows that we collect enough fees to cover our gas costs."

Page | 12

Omni Chain Review 2 Detailed Findings

OM2-05 Unprotected Secret Files
Asset halo/app/start.go, halo/app/privkey.go, lib/ethclient/jwt.go

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The JWT token , validator crypto.PrivKey and p2p.NodeKey are read from unprotected files. In the function Start()

on line [107], loadPrivVal() is called, where the validator state and private key are read as described and shown infollowing code segment.
func loadPrivVal(cfg Config) (*privval.FilePV, error) {

cmtFile := cfg.Comet.PrivValidatorKeyFile()
cmtExists := exists(cmtFile)

if !cmtExists {
return nil, errors.New("cometBFT priv validator key file is required", "comet_file", cmtFile)

}

key, err := LoadCometFilePV(cmtFile)
if err != nil {

return nil, err
}

state, err := loadCometPVState(cfg.Comet.PrivValidatorStateFile())
if err != nil {

return nil, err
}

// Create a new privval.FilePV with the loaded key and state.
// This is a workaround for the fact that there is no other way
// to set FilePVLastSignState filePath field.
resp := privval.NewFilePV(key, "", cfg.Comet.PrivValidatorStateFile())
resp.LastSignState.Step = state.Step
resp.LastSignState.Round = state.Round
resp.LastSignState.Height = state.Height
resp.LastSignState.Signature = state.Signature
resp.LastSignState.SignBytes = state.SignBytes

return resp, nil
}

Similarly, in Start() line [122], newEngineClient() is called which on line [314] calls LoadJWTHexFile() shown in thefollowing code segment.

Page | 13

Omni Chain Review 2 Detailed Findings

func LoadJWTHexFile(file string) ([]byte, error) {
jwtHex, err := os.ReadFile(file)
if err != nil {

return nil, errors.Wrap(err, "read jwt file")
}

jwtHex = bytes.TrimSpace(jwtHex)
jwtHex = bytes.TrimPrefix(jwtHex, []byte("0x"))

jwtBytes, err := hex.DecodeString(string(jwtHex))
if err != nil {

return nil, errors.Wrap(err, "decode jwt file")
}

return jwtBytes, nil
}

Same issue is present when calling p2p.LoadOrGenNodeKey() newCometNode() line [217] in Start() on line [155].In case the node was compromised through another vulnerability, this could lead to a serious issue. As such it has beengiven the impact of medium and likelihood low.

Recommendations

At least restrictive permissions should be enforced on these files. If using docker, there is also an option of using
https://docs.docker.com/compose/use-secrets/ .

Resolution

The Omni team has acknowledged this issues. As the likelihood is low and the node would need to be compromisedto exploit it, the team has decided to consider adding a best practices guide for node opeartors.

Page | 14

Omni Chain Review 2 Detailed Findings

OM2-06 Bridge Fee Requirement Is Too Strict
Asset OmniBridgeL1.sol & OmniBridgeNative.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

The _bridge() function in both L1 and native bridges checks for msg.value == bridgeFee(payor, to, amount) whichis too strict and can cause bridging to fail if the fee changes before the transaction is executed.
bridgeFee() points to FeeOracleV1.feeFor() , which can return a different value if any of these variables change:

• The gas price on the execution chain
• The gas price on the chain that the destination chain posts data to
• The exchange rate between the native token of the source chain and the native token of the destination chain
• The exchange rate between the native token of the destination chain and the native token of the chain that thedestination chain posts data to

If any of these variables changes leading to a different bridgeFee() , the bridge() function will revert.

Recommendations

Consider changing the condition to msg.value >= bridgeFee(payor, to, amount) .

Resolution

The Omni team has implemented the recommended fix in PR #2135.

Page | 15

https://github.com/omni-network/omni/pull/2135

Omni Chain Review 2 Detailed Findings

OM2-07 Incorrect OmniGasPump ETH Quote
Asset OmniGasPump.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

The quote() function incorrectly adds the scaled up amtETH back to amtETH .
function quote(uint256 amtOMNI) public view returns (uint256) {

uint256 amtETH = _toEth(amtOMNI);

// "undo" toll
// @audit scaled up amtETH is added back to amtETH
amtETH += (amtETH * TOLL_DENOM / (TOLL_DENOM - toll));

// "undo" xcall fee
return amtETH + xfee();

}

This leads to an amtETH that is higher than intended.
This issue has a low impact because quote() is a view function that is not called by any Omni contracts. However,
integrators or XApps using this function can end up swapping more ETH than intended through OmniGasPump .

Recommendations

Assign the scaled value back to amtETH instead of adding it.
amtETH = (amtETH * TOLL_DENOM) / (TOLL_DENOM - toll);

Resolution

The Omni team has implemented the recommended fix in PR #1817.

Page | 16

https://github.com/omni-network/omni/pull/1817

Omni Chain Review 2 Detailed Findings

OM2-08 Nested XMsgs Break MsgContext

Asset OmniPortal.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Anested XMsg can be used tomanipulate the current _xmsg such that it incorrectly portrays that there is no MsgContext .
After OmniPortal executes an XMsg , it deletes the _xmsg state variable.
// set _xmsg to the one we're executing, allowing external contracts to query the current xmsg via xmsg()
xmsg = XTypes.MsgContext(sourceChainId, xmsg.sender);

(bool success, bytes memory result, uint256 gasUsed) = xmsg_.to == VirtualPortalAddress // calls to VirtualPortalAddress are
syscalls↪→

? _syscall(xmsg_.data)
: _call(xmsg_.to, xmsg_.gasLimit, xmsg_.data);

// reset xmsg to zero
delete _xmsg;

When nesting an XMsg , once the inner XMsg has finished executing, the _xmsg is deleted instead of being set back to
the outer XMsg ’s MsgContext , allowing an attacker to incorrectly portray that there is no MsgContext .
Note that the _exec() function does not allow user XCalls to the portal, however, this can be circumvented by
sending the XMsg to a contract that calls OmniPortal.xsubmit() .

Recommendations

Instead of deleting _xmsg after each XMsg execution, store the previous MsgContext in memory and set _xmsg back
to it after each XMsg execution.

Resolution

The xsubmit() function has a nonReentrant modifier, so nesting XMsgs is not possible. Hence, this issue is notexploitable in practice.

Page | 17

Omni Chain Review 2 Detailed Findings

OM2-09 Missing Validation Of cchain.SDKValidator Structure
Asset lib/cchain/provider.go

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The cchainSDKValidator.ConsensusPubKey.Value length is not checked. This could cause a panic in ConsensusCmtAddr()on line [151] in case the length of this byte slice is anything other than 33.The call to pk.Address() , seen below, panics in case the length of cosmosk1.PubKey is not 33.
func (v SDKValidator) ConsensusCmtAddr() (cmtcrypto.Address, error) {

pk := new(cosmosk1.PubKey)
err := proto.Unmarshal(v.ConsensusPubkey.Value, pk)
if err != nil {

return nil, errors.Wrap(err, "unmarshal consensus pubkey")
}

return pk.Address(), nil
}

The issue has been assigned impact and likelihood low since it is called in monitorOnce() on line [53] after calling
ConsensusEthAddr() which errors in the same case

Recommendations

Implement a check for the length before calling pk.Address() to prevent the possibility of a vulnerability fromoccurringin the future.

Resolution

The Omni team has implemented a fix in PR #2121.

Page | 18

https://github.com/omni-network/omni/pull/2121

Omni Chain Review 2 Detailed Findings

OM2-10 Validator Addresses Not Verified Against Signature
Asset lib/xchain/abi.go

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

In functions SubmissionsToBinding() line [151] and SubmissionsFromBinding() line [100]
sig.ValidatorAddress and sig.Signature are assigned to SigTuple and bindings.ValidatorSigTuple respectively,without verifying the addresses against the signatures as shown in following code segments.
func SubmissionFromBinding(sub bindings.XSubmission, destChainID uint64) Submission {

sigs := make([]SigTuple, 0, len(sub.Signatures))
for _, sig := range sub.Signatures {

sigs = append(sigs, SigTuple{
ValidatorAddress: sig.ValidatorAddr,
Signature: Signature65(sig.Signature),

})
}

...
}

func SubmissionToBinding(sub Submission) bindings.XSubmission {
// Sort the signatures by validator address to ensure deterministic ordering.
sort.Slice(sub.Signatures, func(i, j int) bool {

return sub.Signatures[i].ValidatorAddress.Cmp(sub.Signatures[j].ValidatorAddress) < 0
})

sigs := make([]bindings.ValidatorSigTuple, 0, len(sub.Signatures))
for _, sig := range sub.Signatures {

sigs = append(sigs, bindings.ValidatorSigTuple{
ValidatorAddr: sig.ValidatorAddress,
Signature: sig.Signature[:],

})
}

...
}

This issue was given likelihood and impact low, as the signatures are verified on-chain, in OmniPortal.sol .

Recommendations

Implement signature verification before converting from bindings to submissions or vice versa.

Resolution

The Omni team has resolved the issue in PR #2137.

Page | 19

https://github.com/omni-network/omni/pull/2137

Omni Chain Review 2 Detailed Findings

OM2-11 Missing Storage Gap From OmniPortalStorage

Asset OmniPortalStorage.sol

Status Closed: See Resolution
Rating Informational

Description

The OmniPortalStorage contract does not have a storage gap to prevent storage slot collisions that may arise when
upgrading OmniPortal .
This issue has an informational rating as OmniPortalStorage is the last contract in OmniPortal 's inheritance chain, and
OmniPortal does not define any new state variables. However, it is still good practice to leave a storage gap to preventstorage slot collisions that may arise in the future if OmniPortal inherits from new contracts.

Recommendations

Add a storage gap at the end of the OmniPortalStorage contract.

Resolution

The Omni team has acknowledged this issue and opted not to add a storage gap. As OmniPortal is the top-levelcontract, one can be added in the future if another contract is inherited after OmniPortalStorage in the chain.

Page | 20

Omni Chain Review 2 Detailed Findings

OM2-12 Incorrect XCall Condition In XAppBase

Asset XAppBase.sol

Status Resolved: See Resolution
Rating Informational

Description

The require() statement in xcall() checks for msg.value which can be incorrect when any value is sent or reservedfor app fees.
The following check in xcall() ensures that there is enough native tokens to pay for the XCall fee:
require(address(this).balance >= fee || msg.value >= fee, "XApp: insufficient funds");

Checking msg.value >= fee can be incorrect if any value is sent to another address before calling xcall() , or if the
XApp contract takes its own fee in native tokens.
For example, a cross-L2 ETH bridge may take its own app fee in ETH when bridging from Optimism to Arbitrum. If theuser sends enough ETH to cover the XCall fee but not enough for the app fee, the XCall will still succeed and theapp fee is not applied.
This issue has an informational rating as it can be mitigated if the XApp developer is aware of this behaviour and
correctly checks for msg.value >= xcallFee + appFee .

Recommendations

Instead of checking for msg.value >= fee , allow the XApp contract to take an amtForFee parameter in xcall() and
check for amtForFee >= fee .
The XApp contract can deduct any app fees or transferred value from msg.value before calling xcall() .

Resolution

The Omni team has removed the msg.value >= fee check and has added Natspec comments to inform XApp devel-
opers of where the XCall fee is deducted from.
This issue has been resolved in PR #2301.

Page | 21

https://github.com/omni-network/omni/pull/2301

Omni Chain Review 2 Detailed Findings

OM2-13 Return nil Both For Error And abci.ValidatorUpdate

Asset halo/valsync/keeper/keeper.go

Status Resolved: See Resolution
Rating Informational

Description

The processAttested() function returns a nil value both for an error and for the abci.ValidatorUpdate on line[302] and line [316] as can be seen in the following code segment.
func (k *Keeper) processAttested(ctx context.Context) ([]abci.ValidatorUpdate, error) {

valset, ok, err := k.nextUnattestedSet(ctx)
if err != nil {

return nil, err
} else if !ok {

return nil, nil // No unattested set, so no updates.
}

sdkCtx := sdk.UnwrapSDKContext(ctx)
chainID, err := netconf.ConsensusChainIDStr2Uint64(sdkCtx.ChainID())
if err != nil {

return nil, errors.Wrap(err, "parse chain id")
}
conf := xchain.ConfFinalized // TODO(corver): Move this to static netconf.

// Check if this unattested set was attested to
if atts, err := k.aKeeper.ListAttestationsFrom(ctx, chainID, uint32(conf), valset.GetAttestOffset(), 1); err != nil {

return nil, errors.Wrap(err, "list attestations")
} else if len(atts) == 0 {

return nil, nil // No attested set, so no updates.
}

...

This has been given informational severity as there is no available exploit path currently for it, but could lead to easycoding mistakes and a potential vulnerability,

Recommendations

Return custom error when there is no validator updates and handle it specifically when calling the function.

Resolution

This has been deemed as a non-issue as:

"The processAttested function is called exclusively from the EndBlock callback. The keeper.Cosmos checks the
length of ValidatorUpdates internally before processing, ensuring that it only proceeds when there are valid up-
dates. In this case nil, nil is a valid response for slices. Therefore, no additional action is required in this case."

Page | 22

Omni Chain Review 2 Detailed Findings

OM2-14 Miscellaneous General Comments
Asset All contracts
Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Gas Optimisations
Related Asset(s): Quorum.sol
The verify() function declares prev as memory even though it is not modified in the function.
for (uint256 i = 0; i < sigs.length; i++) {

sig = sigs[i];

if (i > 0) {
XTypes.SigTuple memory prev = sigs[i - 1];
// ...

}
// ...

}

Change the declaration of prev from memory to calldata to save gas.
2. Typos In Natspec

Related Asset(s): OmniPortalStorage.sol, XTypes.sol, IOmniPortal.sol, OmniPortal.sol
There are several instances in the codebase with incorrect Natspec comments:
(a) The comment in OmniPortalStorage on line [80] reads:

/**
* @notice Offset of the last outbound XMsg that was sent to destChainId in shardId
* Maps destChainId -> shardId -> offset.
*/
mapping(uint64 => mapping(uint64 => uint64)) public inXMsgOffset;

Replace mentions of destChainId with sourceChainId .
(b) The comment in XTypes.sol on line [45] mentions the BlockHeader struct field is sourceChainId , when it

should be consensusChainId .
* @custom:field sourceChainId Chain ID of the Omni consensus chain

Replace sourceChainId with consensusChainId .
(c) The comments at the following locations indicate that the first byte of shardId is the confLevel .

i. IOmniPortal.sol on line [36]
ii. XTypes.sol on line [15]
iii. OmniPortal.sol on line [135]
Correct the comments to indicate that confLevel is the last byte of shardId .

Page | 23

Omni Chain Review 2 Detailed Findings

3. Missing Input Validation
Related Asset(s): Staking.sol, OmniBridgeL1.sol, OmniGasPump.sol, OmniPortal.sol
There are several instances in the codebase with missing input validation:
(a) The following functions do not have zero address checks:

i. OmniBridgeL1.initialize() : Does not check that omni is not the zero address.
ii. OmniGasPump.withdraw() : Does not check that to is not the zero address.
iii. OmniGasPump.fillUp() : Does not check that recipient is not the zero address.

(b) Staking.delegate() does not check that validator is in the allow list if it is enabled.
(c) OmniPortal._setXMsgMinGasLimit() and _setXMsgMaxGasLimit() do not check that

xmsgMinGasLimit <= xmsgMaxGasLimit when the values are set. If xmsgMinGasLimit is accidentally set to a
value greater than xmsgMaxGasLimit there would be no valid range and xcall() will always revert.

Add the input validation checks to the relevant functions.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The Omni team has implemented fixes for the issues above in PRs #2143 and #1886.

Page | 24

https://github.com/omni-network/omni/pull/2143
https://github.com/omni-network/omni/pull/1886

Omni Chain Review 2 Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document. The
brownie framework was used to perform these tests and the output is given below.
Ran 1 test for test/tests-local/OmniPortal.t.sol:OmniPortalTest
[PASS] test_initial() (gas: 35343)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 5.79ms (81.61µs CPU time)

Ran 1 test for test/tests-local/Staking.t.sol:StakingTest
[PASS] test_createValidator() (gas: 356282)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 6.24ms (417.64µs CPU time)

Ran 4 tests for test/tests-local/OmniBridge.t.sol:OmniBridgeTest
[PASS] test_bridgeL1() (gas: 1050186)
[PASS] test_bridgeNative() (gas: 1626991)
[PASS] test_claimNative() (gas: 1589806)
[SKIP] test_withdraw_LostFundsWhenPaused_Vuln() (gas: 0)
Suite result: ok. 3 passed; 0 failed; 1 skipped; finished in 7.61ms (4.29ms CPU time)

Ran 1 test for test/tests-local/OmniGasPump.t.sol:OmniGasPumpTest
[PASS] testFuzz_quote_IncorrectAmount_Vuln(uint256) (runs: 1001, µ: 204301, ~: 204295)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 474.44ms (468.37ms CPU time)

Ran 4 test suites in 475.12ms (494.09ms CPU time): 6 tests passed, 0 failed, 1 skipped (7 total tests)

Page | 25

Omni Chain Review 2 Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

Page | 26

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Nil Dereference In XBlock()
	Lost Bridged Funds When Pausing ACTION_WITHDRAW
	Incorrect Data Cost Calculation
	Lack Of Support For Non-EVM Data Pricing
	Unprotected Secret Files
	Bridge Fee Requirement Is Too Strict
	Incorrect OmniGasPump ETH Quote
	Nested XMsgs Break MsgContext
	Missing Validation Of cchain.SDKValidator Structure
	Validator Addresses Not Verified Against Signature
	Missing Storage Gap From OmniPortalStorage
	Incorrect XCall Condition In XAppBase
	Return nil Both For Error And abci.ValidatorUpdate
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

