
Omni

AVS And Token Smart Contract Review
Version: 2.1

April, 2024

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Scope . 3Approach . 3Coverage Limitations . 3Findings Summary . 4
Detailed Findings 5

Summary of Findings 6Infinite Loop In _getSelfDelegations() . 7
syncWithOmni() Can Surpass Ethereum Block Gas Limit . 8
syncWithOmni() Can Surpass XMsg Max Gas Limit . 9Gas Optimisations . 10Miscellaneous General Comments . 11

A Test Suite 12

B Vulnerability Severity Classification 13

1

AVS And Token Smart Contract Review Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Omni smart contracts.The review focused solely on the security aspects of the Solidity implementation of the contract, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Omni smart contracts contained within thescope of the security review. A summary followed by a detailed review of the discovered vulnerabilities is thengivenwhich assigns each vulnerability a severity rating (seeVulnerability Severity Classification), an open/closed/resolvedstatus and a recommendation. Additionally, findings which do not have direct security implications (but are po-tentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Omni smart contracts.

Overview

The Omni token is an ERC20 token designed to be deployed on Ethereum L1. It uses open source libraries fromOpenZeppelin for all functionality. It has a maximum total supply of 100 million tokens.
OmniAVS hooks into Eigenlayer for operator registration and ETH delegation. It keeps track of the currentoperator set and how much ETH is delegated to them. Additionally, it syncs operator set updates with the Omnichain.

Page | 2

AVS And Token Smart Contract Review Security Assessment Summary

Security Assessment Summary

Scope

The scope of this time-boxed review was strictly limited to the following files at commit 6c51393.

1. OmniAVS.sol
2. Omni.sol

Retesting was performed on commit b4e82eb.
Note: third party libraries and dependencies, such as OpenZeppelin, were excluded from the scope of this assessment.

Approach

The review was conducted on the files hosted on the Omni repository at commit 6c51393.
The manual review focused on identifying issues associated with the business logic implementation of the con-tracts. This includes their internal interactions, intended functionality and correct implementation with respectto the underlying functionality of the Ethereum Virtual Machine (for example, verifying correct storage/memorylayout).
Additionally, the manual review process focused on identifying vulnerabilities related to known Solidity anti-patterns and attack vectors, such as re-entrancy, front-running, integer overflow/underflow and correct visibilityspecifiers.
For a more detailed, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team also utilised the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Coverage Limitations

Due to a time-boxed nature of this review, all documented vulnerabilities reflect best effort within the alloted,limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code, and anyrelated functionality, where majority of critical and high risk vulnerabilities were identified.

Page | 3

https://github.com/omni-network/omni/commit/6c5139354de2d3be65bb8db94a0460afdbcfe3e1
https://github.com/omni-network/omni/commit/b4e82eb38fb2f09f1f53aeebafaf93ec2920910d
https://github.com/omni-network/omni
https://github.com/omni-network/omni/commit/6c5139354de2d3be65bb8db94a0460afdbcfe3e1
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

AVS And Token Smart Contract Review Findings Summary

Findings Summary

The testing team identified a total of 5 issues during this assessment. Categorised by their severity:
• Critical: 1 issue.
• Low: 2 issues.
• Informational: 2 issues.

Page | 4

AVS And Token Smart Contract Review Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Omni smart contracts.Each vulnerability has a severity classification which is determined from the likelihood and impact of each issueby the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status
OMI-01 Infinite Loop In _getSelfDelegations() Critical Resolved

OMI-02 syncWithOmni() Can Surpass Ethereum Block Gas Limit Low Closed

OMI-03 syncWithOmni() Can Surpass XMsg Max Gas Limit Low Closed

OMI-04 Gas Optimisations Informational Resolved

OMI-05 Miscellaneous General Comments Informational Resolved

6

AVS And Token Smart Contract Review Detailed Findings

OMI-01 Infinite Loop In _getSelfDelegations()

Asset OmniAVS.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

The _getSelfDelegations() function can suffer from an infinite loop if the operator has staked in a strategy that
is not included in the _strategyParams array. This causes syncWithOmni() to fail if any operator has staked in anincompatible strategy.

551 for (uint256 i = 0; i < strategies.length;) {
IStrategy strat = strategies[i];

553
// find the strategy params for the strategy

555 StrategyParam memory params;
for (uint256 j = 0; j < _strategyParams.length;) {

557 if (address(_strategyParams[j].strategy) == address(strat)) {
params = _strategyParams[j];

559 break;
}

561 unchecked {
j++;

563 }
}

565
// if strategy is not found, do not consider it in stake

567 if (address(params.strategy) == address(0)) continue;

569 staked += _weight(shares[i], params.multiplier);
unchecked {

571 i++;
}

573 }

If the current strategy is not found inside _strategyParams in line [567], the outer for-loop will continue without incre-
menting the i iterator and the same incompatible strategy will be checked indefinitely until the transaction runs outof gas.

Recommendations

There are two proposed solutions to resolve the issue.

1. Move i++ into the for-loop header in line [551]
2. Increment i inside the if-block before the continue keyword in line [567].

Resolution

The issue has been addressed in commit fc19c26 where i++ has been added to the loop definition.
Page | 7

https://github.com/omni-network/omni/commit/fc19c2619666c0a1a937f9e0cc1624ba026989f1

AVS And Token Smart Contract Review Detailed Findings

OMI-02 syncWithOmni() Can Surpass Ethereum Block Gas Limit
Asset OmniAVS.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

Due to the use of for-loops when calling the _getOperators() function, it is possible for calls to the syncWithOmni()function to use more gas than the Ethereum block gas limit (30 million), which results in the call reverting.
Tests demonstrate this is possible with 98 registered operators staking in 24 EigenLayer strategies each, where allstrategies have strategy parameters in OmniAVS .

Recommendations

There are two proposed solutions to resolve the issue.

1. Reduce the gas usage of _getTotalDelegations() and _getSelfDelegations() and avoid iterating through ar-rays where possible, or
2. Limit the amount of strategy parameters and number of operators such that syncWithOmni() can no longersurpass the Ethereum block gas limit in gas usage.

Resolution

The project team has acknowledged the issue with the following comment:

"For our initial mainnet release, wewill maintain a small list of allowed operators and strategies. Operators will not
exceed 30, and supported strategies will not exceed 10. Gas optimizations would require non-trivial refactoring,
adding complexity for (under these stricter conditions) marginal benefit. Gas optimizations will be considered in a
future release when these conditions are less strict."

Page | 8

AVS And Token Smart Contract Review Detailed Findings

OMI-03 syncWithOmni() Can Surpass XMsg Max Gas Limit
Asset OmniAVS.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

In OmniPortalConstants , the max gas limit for XMsg s (XMSG_MAX_GAS_LIMIT) is set to 5 million gas units.
In OmniAVS , the base gas limit and gas limit per operator is initialised as 75,000 and 50,000 respectively. This meansthat the max number of operators before surpassing the XMsg gas limit is 98 operators.
If there are 99 or more operators registered in OmniAVS , all calls to syncWithOmni() will revert as the gas limit for the
XMsg will be too high.

Recommendations

Consider doing one of the following:

1. Raising the XMsg max gas limit.
2. Reducing the gas limit per operator.
3. Setting the max operator count to less than 98 allowing for a buffer if gas prices change.
4. Allowing the gas limit to be configurable by admin.

Resolution

The project team has acknowledged this issue with the following comment:

"We do not plan to address this issue in this release due to the following reasons:

1. We do not plan on supporting a list of operators greater than 30 in the near-to-mid term.
2. We will likely be able to reduce the XMsg max gas limit per operator in the future."

Page | 9

AVS And Token Smart Contract Review Detailed Findings

OMI-04 Gas Optimisations
Asset OmniAVS.sol

Status Resolved: See Resolution
Rating Informational

Description

The following gas optimisation changes can be made to greatly reduce gas costs and risk of DoS from reaching theblock gas limit:

1. The _isOperator() function can use the _operatorPubkeys mapping to check if the value corresponding to theoperator’s address is non-zero.
2. Avoid linear searches by using mappings to store the indexes of operators and strategy parameters in the

_operators and _strategyParams arrays. Ensure that the index values are updated whenever changes to thearrays are made.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The project team has addressed the first gas optimization suggestion in commit 31e15e6.
The second suggestion has been acknowledged with the following comment:

"We looked into gas optimizing the contract using OpenZeppelin’s EnumerableSet library. After analysis, we found
that for reasonably small numbers of operators & strategies, the gas optimizations do not help that much. Given
that the number of strategies we plan to support will not exceed 10, and likely remain closer to 5, optimizing for
this case now is not necessary."

Page | 10

https://github.com/omni-network/omni/commit/31e15e66702c0f7e8fad69a09e3174c9ccd400ba

AVS And Token Smart Contract Review Detailed Findings

OMI-05 Miscellaneous General Comments
Asset contracts/*

Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. params.multiplier validation

Related Asset(s): OmniAVS.sol

In the _setStrategyParams() function, consider validating all strategy parameter multipliers so that they do notequal to zero.
2. Zero-address check

Related Asset(s): OmniAVS.sol

Consider adding zero address checks for critical setters such as setOmniPortal() and setEthStakeInbox()

3. _strategyParams strategy limit

Related Asset(s): OmniAVS.sol

The _strategyParams array is iterated through in various functions inside nested for-loops.
Consider introducing a max limit for the number of strategies that can be added to the _strategyParams arrayto prevent high gas costs and potential DoS due to running out of gas.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team have acknowledged these findings, addressing them where appropriate as follows:

1. params.multiplier validation: Addressed in 763f0e3
2. Zero-address check: Addressed in b96525d
3. _strategyParams strategy limit: Acknowledged with comment - "Given that we have admin control over the strat-

egy parameters, we do not think enforcing a limit is required."

Page | 11

https://github.com/omni-network/omni/commit/763f0e3671100b49194be63ff878238cd2b2a9ef
https://github.com/omni-network/omni/commit/b96525d18444750bb4f4e85d711ce9857cc65433

AVS And Token Smart Contract Review Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The forge framework was used to perform these tests and the output is given below.
Ran 3 tests for test/Omni.t.sol:OmniTest
[PASS] test_initialMint() (gas: 12039)
[PASS] test_transfer() (gas: 44494)
[PASS] test_transferFrom() (gas: 56436)
Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 1.21ms (441.92us CPU time)

Ran 25 tests for test/OmniAVS.t.sol:OmniAVSTest
[PASS] testFuzz_setMaxOperatorCount(uint32) (runs: 1001, u: 40578, ~: 40578)
[PASS] testFuzz_setMinOperatorStake(uint96) (runs: 1001, u: 40744, ~: 40744)
[PASS] testFuzz_setOmniChainId(uint64) (runs: 1001, u: 39223, ~: 39223)
[PASS] testFuzz_setXCallGasLimits(uint64,uint64) (runs: 1001, u: 41620, ~: 41620)
[PASS] test_allowlist_addAndRemove() (gas: 69457)
[PASS] test_allowlist_enableAndDisable() (gas: 58070)
[PASS] test_avsDirectory() (gas: 15137)
[PASS] test_canRegister() (gas: 93722900)
[PASS] test_deregisterOperator() (gas: 1619264)
[PASS] test_ejectOperator() (gas: 933567)
[PASS] test_feeForSync() (gas: 953755)
[PASS] test_getOperatorRestakedStrategies() (gas: 907328)
[PASS] test_isInAllowlist() (gas: 50017)
[PASS] test_operators() (gas: 1039091)
[PASS] test_pauseAndUnpause() (gas: 121657)
[PASS] test_registerOperator() (gas: 97228406)
[PASS] test_setEthStakeInbox() (gas: 40854)
[PASS] test_setMetadataURI() (gas: 50077)
[PASS] test_setOmniPortal() (gas: 52065)
[PASS] test_setStrategyParams() (gas: 142471)
[PASS] test_strategyParams_getRestakeableStrategies_equivalence() (gas: 26445)
[FAIL. Reason: assertion failed] test_syncWithOmni_enoughGas_Vuln() (gas: 639285853)
[PASS] test_syncWithOmni_fee() (gas: 110364)
[PASS] test_syncWithOmni_infiniteLoop_Vuln() (gas: 2323743)
[FAIL. Reason: revert: OmniPortal: gasLimit too high] test_syncWithOmni_xmsgGasLimitDoS_Vuln() (gas: 66232376)
Suite result: FAILED. 23 passed; 2 failed; 0 skipped; finished in 1.02s (2.22s CPU time)

Page | 12

AVS And Token Smart Contract Review Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 13

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Infinite Loop In _getSelfDelegations()
	syncWithOmni() Can Surpass Ethereum Block Gas Limit
	syncWithOmni() Can Surpass XMsg Max Gas Limit
	Gas Optimisations
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

